Publications

What is a Publication?
89 Publications visible to you, out of a total of 89

Abstract (Expand)

Prerequisite for a successful proteomics experiment is a high-quality lysis of the sample of interest, resulting in a large number of identified proteins as well as a high coverage of protein sequences. Therefore, the choice of suitable lysis conditions is crucial. Many buffers were previously employed in proteomics studies, yet a comprehensive comparison of lysate preparation conditions was so far missing. In this study, we compared the efficiency of four commonly used lysis buffers, containing the agents NP40, SDS, urea or GdnHCl, in four different types of biological samples (suspension and adherent cell lines, primary mouse cells and mouse liver tissue). After liquid chromatography-mass spectrometry (LC-MS) measurement and MaxQuant analysis, we compared chromatograms, intensities, number of identified proteins and the localization of the identified proteins. Overall, SDS emerged as the most reliable reagent, ensuring stable performance and reproducibility across diverse samples. Furthermore, our data advocated for a dual-sample lysis approach, including that the resulting pellet is lysed again after the initial lysis with a urea lysis buffer and subsequently both lysates are combined for a single LC-MS run to maximize the proteome coverage. However, none of the investigated lysis buffers proved to be superior in every category, indicating that the lysis buffer of choice depends on the proteins of interest and on the biological question. Further, we demonstrated with our systematic studies the establishment of conditions that allows to perform global proteomics and affinity purification-based interactome characterization from the same lysate. In sum our results provide guidance for the best-suited lysis buffer for mass spectrometry-based proteomics depending on the question of interest.

Authors: Barbara Helm, Pauline Hansen, Li Lai, Luisa Schwarzmüller, Simone M. Clas, Annika Richter, Max Ruwolt, Fan Liu, Dario Frey, Lorenza A. D’Alessandro, Wolf-Dieter Lehmann, Marcel Schilling, Dominic Helm, Dorothea Fiedler, Ursula Klingmüller

Date Published: 21st Feb 2024

Publication Type: Journal

Abstract

Not specified

Authors: Chaowen Zheng, Siyuan Li, Huanran Lyu, Cheng Chen, Johannes Mueller, Anne Dropmann, Seddik Hammad, Steven Dooley, Songqing He, Sebastian Mueller

Date Published: 2024

Publication Type: Journal

Abstract (Expand)

Abstract Type I interferons (IFNs) play a central role not only in innate immunity against viral infection, but also in the antitumour response, e.g. through a direct impact on cell proliferation.act on cell proliferation. Particularly for cancer arising in the context of chronic inflammation, constant exposure to IFNs may constitute a strong selective pressure during tumour evolution. Expansion of neoplastic subclones resistant to the antiproliferative effects of IFNs may contribute to immunoediting of tumours, leading to more aggressive disease. Experimental evidence for this development of IFN-insensitivity has been scarce and its molecular mechanism is unclear. In this study we demonstrate that six weeks exposure of cells to IFN-β in vitro reduces their sensitivity to its antiproliferative effects, and that this phenotype was stable for up to four weeks. Furthermore, we observed substantial differences in cellular sensitivity to growth inhibition by IFN-β in a panel of ten different liver cancer cell lines, most prominently in a pair of highly dedifferentiated cell lines, and least in cells from well-differentiated tumours. In both, long-term IFN selection and in dedifferentiated tumour cell lines, we found IFNAR2 expression to be substantially reduced, suggesting the receptor complex to be a sensitive target amenable to immunoediting. Beyond new insights into possible molecular processes in tumour evolution, these findings might prove valuable for the development of biomarkers allowing to stratify tumours for their sensitivity to IFN treatment in the context of patient tailored therapies.

Authors: Felix Hiebinger, Aiste Kudulyte, Huanting Chi, Sebastian Burbano De Lara, Doroteja Ilic, Barbara Helm, Hendrik Welsch, Viet Loan Dao Thi, Ursula Klingmüller, Marco Binder

Date Published: 1st Dec 2023

Publication Type: Journal

Abstract (Expand)

Hepatitis C virus (HCV) infection can lead to hepatic fibrosis. The advent of direct-acting antivirals (DAAs) has substantially improved sustained virological response (SVR) rates. In this context, this context, kidney transplant recipients (KTRs) are of particular interest due to their higher HCV infection rates and uncertain renal excretion and bioavailability of DAAs. We investigated liver stiffness after DAA treatment in 15 HCV-infected KTRs using ultrasound shear wave elastography (SWE) in comparison with magnetic resonance elastography (MRE). KTRs were treated with DAAs (daclatasvir and sofosbuvir) for three months and underwent SWE at baseline, end of therapy (EOT), and 3 (EOT+3) and 12 months (EOT+12) after EOT. Fourteen patients achieved SVR12. Shear wave speed (SWS)—as a surrogate parameter for tissue stiffness—was substantially lower at all three post-therapeutic timepoints compared with baseline (EOT: −0.42 m/s, p < 0.01; CI = −0.75–−0.09, EOT+3: −0.43 m/s, p < 0.01; CI = −0.75–−0.11, and EOT+12: −0.52 m/s, p < 0.001; CI = −0.84–−0.19), suggesting liver regeneration after viral eradication and end of inflammation. Baseline SWS correlated positively with histopathological fibrosis scores (r = 0.48; CI = −0.11–0.85). Longitudinal results correlated moderately with APRI (r = 0.41; CI = 0.12–0.64) but not with FIB-4 scores (r = 0.12; CI = −0.19–0.41). Although higher on average, SWE-derived measurements correlated strongly with MRE (r = 0.64). In conclusion, SWE is suitable for non-invasive therapy monitoring in KTRs with HCV infection.

Authors: Salma Almutawakel, Fabian Halleck, Michael Dürr, Ulrike Grittner, Eva Schrezenmeier, Klemens Budde, Christian E. Althoff, Bernd Hamm, Ingolf Sack, Thomas Fischer, Stephan R. Marticorena Garcia

Date Published: 1st Dec 2023

Publication Type: Journal

Abstract (Expand)

Loss of hepatocyte nuclear factor 4α (HNF4α) expression is frequently observed in end-stage liver disease and associated with loss of vital liver functions, thus increasjng mortality. Loss of HNF4α expression is mediated by inflammatory cytokines, such as transforming growth factor (TGF)-β. However, details of how HNF4α is suppressed are largely unknown to date. This study reports that TGF-β does not directly inhibit HNF4α but contributes to its transcriptional regulation by SMAD2/3 recruiting acetyltransferase CREB-binding protein/p300 to the HNF4α promoter. The recruitment of CREB-binding protein/p300 is indispensable for CCAAT/enhancer-binding protein α (C/EBPα) binding, another essential requirement for constitutive HNF4α expression in hepatocytes. Consistent with the in vitro observation, 67 of 98 patients with hepatic HNF4α express both phospho-SMAD2 and C/EBPα, whereas 22 patients without HNF4α expression lack either phospho-SMAD2 or C/EBPα. In contrast to the observed induction of HNF4α, SMAD2/3 inhibits C/EBPα transcription. Therefore, long-term TGF-β incubation results in C/EBPα depletion, which abrogates HNF4α expression. Intriguingly, SMAD2/3 inhibitory binding to the C/EBPα promoter is abolished by insulin. Two-thirds of patients without C/EBPα lack membrane glucose transporter type 2 expression in hepatocytes, indicating insulin resistance. Taken together, hepatic insulin sensitivity is essential for hepatic HNF4α expression in the condition of inflammation.

Authors: Rilu Feng, Chenhao Tong, Tao Lin, Hui Liu, Chen Shao, Yujia Li, Carsten Sticht, Kejia Kan, Xiaofeng Li, Rui Liu, Sai Wang, Shanshan Wang, Stefan Munker, Hanno Niess, Christoph Meyer, Roman Liebe, Matthias P. Ebert, Steven Dooley, Hua Wang, Huiguo Ding, Hong-Lei Weng

Date Published: 1st Oct 2023

Publication Type: Journal

Abstract (Expand)

Type I interferons (IFNs) play a central role not only in innate immunity against viral infection, but also in the antitumour response. Apart from indirect immune-modulatory and anti-angiogenic effects, they have direct impact on cell proliferation. Particularly for cancer arising in the context of chronic inflammation, constant exposure to IFNs may constitute a strong selective pressure during tumour evolution. Expansion of neoplastic subclones or -populations that developed resistance to the antiproliferative effects of IFNs might constitute an important contribution to immunoediting of the cancer cells leading to more aggressive and metastasising disease. Experimental evidence for this development of IFN-insensitivity has been scarce and its molecular mechanism is unclear. In this study we demonstrate that prolonged (six weeks) exposure of cells to IFN-β in vitro reduces their sensitivity to its antiproliferative effects, and that this phenotype was stable for up to four weeks. Furthermore, we observed substantial differences in cellular sensitivity to growth inhibition by IFN-β in a panel of ten different liver cancer cell lines of varying malignity. IFN-resistance was most prominent in a pair of highly dedifferentiated cell lines, and least in cells from well-differentiated tumours, fostering the hypothesis of IFN-driven immunoediting in advanced cancers. In both settings, long-term IFN selection in vitro as well as in dedifferentiated tumour cell lines, we found IFNAR expression to be substantially reduced, suggesting the receptor complex, in particular IFNAR2, to be a sensitive target amenable to immunoediting. Beyond new insights into possible molecular processes in tumour evolution, these findings might prove valuable for the development of biomarkers allowing to stratify tumours for their sensitivity to IFN treatment in the context of patient tailored therapies.

Authors: Felix Hiebinger, Aiste Kudulyte, Huanting Chi, Sebastian Burbano De Lara, Barbara Helm, Hendrik Welsch, Viet Loan Dao Thi, Ursula Klingmüller, Marco Binder

Date Published: 24th Aug 2023

Publication Type: Journal

Abstract

Not specified

Authors: Miquel Serra-Burriel, Adrià Juanola, Feliu Serra-Burriel, Maja Thiele, Isabel Graupera, Elisa Pose, Guillem Pera, Ivica Grgurevic, Llorenç Caballeria, Salvatore Piano, Laurens van Kleef, Mathias Reichert, Dominique Roulot, Juan M Pericàs, Jörn M Schattenberg, Emmanuel A Tsochatztis, Indra Neil Guha, Montserrat Garcia-Retortillo, Rosario Hernández, Jordi Hoyo, Matilde Fuentes, Carmen Expósito, Alba Martínez, Patricia Such, Anita Madir, Sönke Detlefsen, Marta Tonon, Andrea Martini, Ann T Ma, Judith Pich, Eva Bonfill, Marta Juan, Anna Soria, Marta Carol, Jordi Gratacós-Ginès, Rosa M Morillas, Pere Toran, J M Navarrete, Antoni Torrejón, Céline Fournier, Anne Llorca, Anita Arslanow, Harry J de Koning, Fernando Cucchietti, Michael Manns, Phillip N Newsome, Rubén Hernáez, Alina Allen, Paolo Angeli, Robert J de Knegt, Tom H Karlsen, Peter Galle, Vincent Wai-Sun Wong, Núria Fabrellas, Laurent Castera, Aleksander Krag, Frank Lammert, Patrick S Kamath, Pere Ginès, Marifé Alvarez, Peter Andersen, Paolo Angeli, Alba Ardèvol, Anita Arslanow, Luca Beggiato, Zahia Ben Abdesselam, Lucy Bennett, Bajiha Boutouria, Alessandra Brocca, M. Teresa Broquetas, Llorenç Caballeria, Valeria Calvino, Judith Camacho, Aura Capdevila, Marta Carol, Laurent Castera, Marta Cervera, Fernando Cucchietti, Anna de Fuentes, Rob de Knegt, Harry J de Koning, Sonke Detlefsen, Alba Diaz, José Diéguez Bande, Vanessa Esnault, Núria Fabrellas, Josep Lluis Falcó, Rosa Fernández, Céline Fournier, Matilde Fuentes, Peter Galle, Edgar García, Montserrat García-Retortillo, Esther Garrido, Pere Ginès, Rosa Gordillo Medina, Jordi Gratacós-Ginès, Isabel Graupera, Ivica Grgurevic, Indra Neil Guha, Eva Guix, Johanne Kragh Hansen, Rebecca Harris, Elena Hernández Boluda, Rosario Hernández-Ibañez, Jordi Hoyo, Arfan Ikram, Simone Incicco, Mads Israelsen, Marta Juan, Adrià Juanola, Ralf Kaiser, Patrick S Kamath, Tom H Karlsen, Maria Kjærgaard, Marko Korenjak, Aleksander Krag, Marcin Krawczyk, Philippe Laboulaye, Irina Lambert, Frank Lammert, Simon Langkjær Sørensen, Cristina Laserna-Jiménez, Sonia Lazaro Pi, Elsa Ledain, Vincent Levy, Katrine Prier Lindvig, Anne Llorca, Vanessa Londoño, Guirec Loyer, Ann T. Ma, Anita Madir, Michael Manns, Denise Marshall, M. Lluïsa Martí, Sara Martínez, Ricard Martínez Sala, Roser Masa-Font, Jane Møller Jensen, Rosa M Morillas, Laura Muñoz, Ruth Nadal, Laura Napoleone, JM Navarrete, Phillip N Newsome, Vibeke Nielsen, Martina Pérez, Juan Manuel Pericás-Pulido, Salvatore Piano, Judit Pich, Elisa Pose, Judit Presas Escobet, Matthias Reichert, Carlota Riba, Dominique Roulot, Ana Belén Rubio, Maria Sánchez-Morata, Jörn Schattenberg, Miquel Serra-Burriel, Feliu Serra-Burriel, Louise Skovborg Just, Milan Sonneveld, Anna Soria, Christiane Stern, Patricia Such, Maja Thiele, Marta Tonon, Pere Toran, Antoni Torrejón, Emmanuel A Tsochatzis, Laurens van Kleef, Paulien van Wijngaarden, Vanessa Velázquez, Ana Viu, Susanne Nicole Weber, Tracey Wildsmith

Date Published: 1st Aug 2023

Publication Type: Journal

Abstract (Expand)

Abstract The human liver has a remarkable capacity to regenerate and thus compensate over decades for fibrosis caused by toxic chemicals, drugs, alcohol, or malnutrition. To date, no protective mechanismsrition. To date, no protective mechanisms have been identified that help the liver tolerate these repeated injuries. In this study, we revealed dysregulation of lipid metabolism and mild inflammation as protective mechanisms by studying longitudinal multi-omic measurements of liver fibrosis induced by repeated CCl 4 injections in mice ( n  = 45). Based on comprehensive proteomics, transcriptomics, blood- and tissue-level profiling, we uncovered three phases of early disease development—initiation, progression, and tolerance. Using novel multi-omic network analysis, we identified multi-level mechanisms that are significantly dysregulated in the injury-tolerant response. Public data analysis shows that these profiles are altered in human liver diseases, including fibrosis and early cirrhosis stages. Our findings mark the beginning of the tolerance phase as the critical switching point in liver response to repetitive toxic doses. After fostering extracellular matrix accumulation as an acute response, we observe a deposition of tiny lipid droplets in hepatocytes only in the Tolerant phase. Our comprehensive study shows that lipid metabolism and mild inflammation may serve as biomarkers and are putative functional requirements to resist further disease progression.

Authors: Seddik Hammad, Christoph Ogris, Amnah Othman, Pia Erdoesi, Wolfgang Schmidt-Heck, Ina Biermayer, Barbara Helm, Yan Gao, Weronika Piorońska, Christian H. Holland, Lorenza A. D’Alessandro, Carolina de la Torre, Carsten Sticht, Sherin Al Aoua, Fabian J. Theis, Heike Bantel, Matthias P. Ebert, Ursula Klingmüller, Jan G. Hengstler, Steven Dooley, Nikola S. Mueller

Date Published: 1st Jul 2023

Publication Type: Journal

Abstract

Not specified

Authors: Mihael Vucur, Ahmed Ghallab, Anne T. Schneider, Arlind Adili, Mingbo Cheng, Mirco Castoldi, Michael T. Singer, Veronika Büttner, Leonie S. Keysberg, Lena Küsgens, Marlene Kohlhepp, Boris Görg, Suchira Gallage, Jose Efren Barragan Avila, Kristian Unger, Claus Kordes, Anne-Laure Leblond, Wiebke Albrecht, Sven H. Loosen, Carolin Lohr, Markus S. Jördens, Anne Babler, Sikander Hayat, David Schumacher, Maria T. Koenen, Olivier Govaere, Mark V. Boekschoten, Simone Jörs, Carlos Villacorta-Martin, Vincenzo Mazzaferro, Josep M. Llovet, Ralf Weiskirchen, Jakob N. Kather, Patrick Starlinger, Michael Trauner, Mark Luedde, Lara R. Heij, Ulf P. Neumann, Verena Keitel, Johannes G. Bode, Rebekka K. Schneider, Frank Tacke, Bodo Levkau, Twan Lammers, Georg Fluegen, Theodore Alexandrov, Amy L. Collins, Glyn Nelson, Fiona Oakley, Derek A. Mann, Christoph Roderburg, Thomas Longerich, Achim Weber, Augusto Villanueva, Andre L. Samson, James M. Murphy, Rafael Kramann, Fabian Geisler, Ivan G. Costa, Jan G. Hengstler, Mathias Heikenwalder, Tom Luedde

Date Published: 1st Jul 2023

Publication Type: Journal

Abstract (Expand)

The interplay between chromatin, transcription factors and genes generates complex regulatory circuits that can be represented as gene regulatory networks (GRNs). The study of GRNs is useful to understand how cellular identity is established, maintained and disrupted in disease. GRNs can be inferred from experimental data - historically, bulk omics data - and/or from the literature. The advent of single-cell multi-omics technologies has led to the development of novel computational methods that leverage genomic, transcriptomic and chromatin accessibility information to infer GRNs at an unprecedented resolution. Here, we review the key principles of inferring GRNs that encompass transcription factor-gene interactions from transcriptomics and chromatin accessibility data. We focus on the comparison and classification of methods that use single-cell multimodal data. We highlight challenges in GRN inference, in particular with respect to benchmarking, and potential further developments using additional data modalities.

Authors: P. Badia-I-Mompel, L. Wessels, S. Muller-Dott, R. Trimbour, R. O. Ramirez Flores, R. Argelaguet, J. Saez-Rodriguez

Date Published: 26th Jun 2023

Publication Type: Journal

Abstract

Not specified

Authors: Stefan Hoehme, Seddik Hammad, Jan Boettger, Brigitte Begher-Tibbe, Petru Bucur, Eric Vibert, Rolf Gebhardt, Jan G. Hengstler, Dirk Drasdo

Date Published: 2023

Publication Type: Journal

Abstract

Not specified

Authors: Le Tao, Guangyue Yang, Tiantian Sun, Jie Tao, Chan Zhu, Huimin Yu, Yalan Cheng, Zongguo Yang, Mingyi Xu, Yuefeng Jiang, Wei Zhang, Zhiyi Wang, Wenting Ma, Liu Wu, Dongying Xue, Dongxue Wang, Wentao Yang, Yongjuan Zhao, Shane Horsefield, Bostjan Kobe, Zhe Zhang, Zongxiang Tang, Qigen Li, Qiwei Zhai, Steven Dooley, Ekihiro Seki, Ping Liu, Jianrong Xu, Hongzhuan Chen, Cheng Liu

Date Published: 2023

Publication Type: Journal

Abstract

Not specified

Authors: Rilu Feng, Kejia Kan, Carsten Sticht, Yujia Li, Shanshan Wang, Hui Liu, Chen Shao, Stefan Munker, Hanno Niess, Sai Wang, Christoph Meyer, Roman Liebe, Matthias P. Ebert, Steven Dooley, Huiguo Ding, Honglei Weng

Date Published: 1st Dec 2022

Publication Type: Journal

Abstract (Expand)

MOTIVATION: Over the last decades, image processing and analysis have become one of the key technologies in systems biology and medicine. The quantification of anatomical structures and dynamic processes in living systems is essential for understanding the complex underlying mechanisms and allows, i.e. the construction of spatio-temporal models that illuminate the interplay between architecture and function. Recently, deep learning significantly improved the performance of traditional image analysis in cases where imaging techniques provide large amounts of data. However, if only a few images are available or qualified annotations are expensive to produce, the applicability of deep learning is still limited. RESULTS: We present a novel approach that combines machine learning-based interactive image segmentation using supervoxels with a clustering method for the automated identification of similarly colored images in large image sets which enables a guided reuse of interactively trained classifiers. Our approach solves the problem of deteriorated segmentation and quantification accuracy when reusing trained classifiers which is due to significant color variability prevalent and often unavoidable in biological and medical images. This increase in efficiency improves the suitability of interactive segmentation for larger image sets, enabling efficient quantification or the rapid generation of training data for deep learning with minimal effort. The presented methods are applicable for almost any image type and represent a useful tool for image analysis tasks in general. AVAILABILITY AND IMPLEMENTATION: The presented methods are implemented in our image processing software TiQuant which is freely available at tiquant.hoehme.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Authors: A. Friebel, T. Johann, D. Drasdo, S. Hoehme

Date Published: 30th Sep 2022

Publication Type: Journal

Abstract (Expand)

Erythropoietin (Epo) ensures survival and proliferation of colony-forming unit erythroid (CFU-E) progenitor cells and their differentiation to hemoglobin-containing mature erythrocytes. A lack of Epo-induced responses causes embryonic lethality, but mechanisms regulating the dynamic communication of cellular alterations to the organismal level remain unresolved. By time-resolved transcriptomics and proteomics, we show that Epo induces in CFU-E cells a gradual transition from proliferation signature proteins to proteins indicative for differentiation, including heme-synthesis enzymes. In the absence of the Epo receptor (EpoR) in embryos, we observe a lack of hemoglobin in CFU-E cells and massive iron overload of the fetal liver pointing to a miscommunication between liver and placenta. A reduction of iron-sulfur cluster-containing proteins involved in oxidative phosphorylation in these embryos leads to a metabolic shift toward glycolysis. This link connecting erythropoiesis with the regulation of iron homeostasis and metabolic reprogramming suggests that balancing these interactions is crucial for protection from iron intoxication and for survival.

Authors: S. Chakraborty, G. Andrieux, P. Kastl, L. Adlung, S. Altamura, M. E. Boehm, L. E. Schwarzmuller, Y. Abdullah, M. C. Wagner, B. Helm, H. J. Grone, W. D. Lehmann, M. Boerries, H. Busch, M. U. Muckenthaler, M. Schilling, U. Klingmuller

Date Published: 20th Sep 2022

Publication Type: Journal

Abstract (Expand)

Objectives. We assessed the potential of glial cell line-derived neurotrophic factor (GDNF) as a useful biomarker to predict cirrhosis in chronic hepatitis B (CHB) patients. Methods. A total of 735nts. Methods. A total of 735 patients from two medical centers (385 CHB patients and 350 healthy controls) were included to determine the association of serum and tissue GDNF levels with biopsy-proven cirrhosis. The diagnostic accuracy of serum GDNF (sGDNF) was estimated and compared with other indices of cirrhosis. Results. We showed significantly higher levels of sGDNF in CHB patients with fibrosis (28.4 pg/ml vs. 11.6 pg/ml in patients without) and patients with cirrhosis (33.8 pg/ml vs. 23.5 pg/ml in patients without). The areas under receiver operating curve (AUROCs) of sGDNF were 0.83 (95% confidence interval (CI): 0.80–0.87) for predicting liver fibrosis and 0.84 (95% CI: 0.79–0.89) for cirrhosis. Findings from the serum protein level and hepatic mRNA expression were consistent. Using the best cutoff to predict cirrhosis, we categorized the patients into sGDNF-high and sGDNF-low groups. The sGDNF-high group had significantly larger Masson’s trichrome and reticulin staining-positive area, higher Scheuer score, and METAVIR fibrosis stage (all p < 0.001 ) but not steatosis. On multivariable regression, sGDNF was independently associated with cirrhosis with an odds ratio of 6.98 (95% CI: 1.10–17.94). Finally, we demonstrated that sGDNF outperformed AST to platelet ratio index, FIB-4, fibroscore, forn index, and fibrometer in differentiating F4 vs. F3. Conclusion. Using serum, tissue mRNA, and biopsy data, our study revealed a significant potential of sGDNF as a novel noninvasive biomarker for cirrhosis in CHB patients.

Authors: Guangyue Yang, Liping Zhuang, Tiantian Sun, Yee Hui Yeo, Le Tao, Wei Zhang, Wenting Ma, Liu Wu, Zongguo Yang, Yanqin Yang, Dongying Xue, Jie Zhang, Rilu Feng, Ebert Matthias P., Steven Dooley, Ekihiro Seki, Ping Liu, Cheng Liu

Date Published: 9th Jul 2022

Publication Type: Journal

Abstract (Expand)

The hepatic Na+-taurocholate cotransporting polypeptide NTCP/SLC10A1 is important for the uptake of bile salts and selected drugs. Its inhibition results in increased systemic bile salt concentrations.oncentrations. NTCP is also the entry receptor for the hepatitis B/D virus. We investigated interindividual hepatic SLC10A1/NTCP expression using various omics technologies. SLC10A1/NTCP mRNA expression/protein abundance was quantified in well-characterized 143 human livers by real-time PCR and LC-MS/MS-based targeted proteomics. Genome-wide SNP arrays and SLC10A1 next-generation sequencing were used for genomic analyses. SLC10A1 DNA methylation was assessed through MALDI-TOF MS. Transcriptomics and untargeted metabolomics (UHPLC-Q-TOF-MS) were correlated to identify NTCP-related metabolic pathways. SLC10A1 mRNA and NTCP protein levels varied 44-fold and 10.4-fold, respectively. Non-genetic factors (e.g., smoking, alcohol consumption) influenced significantly NTCP expression. Genetic variants in SLC10A1 or other genes do not explain expression variability which was validated in livers (n = 50) from The Cancer Genome Atlas. The identified two missense SLC10A1 variants did not impair transport function in transfectants. Specific CpG sites in SLC10A1 as well as single metabolic alterations and pathways (e.g., peroxisomal and bile acid synthesis) were significantly associated with expression. Inter-individual variability of NTCP expression is multifactorial with the contribution of clinical factors, DNA methylation, transcriptional regulation as well as hepatic metabolism, but not genetic variation.

Authors: Roman Tremmel, Anne T. Nies, Barbara A. C. van Eijck, Niklas Handin, Mathias Haag, Stefan Winter, Florian A. Büttner, Charlotte Kölz, Franziska Klein, Pascale Mazzola, Ute Hofmann, Kathrin Klein, Per Hoffmann, Markus M. Nöthen, Fabienne Z. Gaugaz, Per Artursson, Matthias Schwab, Elke Schaeffeler

Date Published: 1st Jul 2022

Publication Type: Journal

Abstract (Expand)

In health and disease, liver cells are continuously exposed to cytokines and growth factors. While individual signal transduction pathways induced by these factors were studied in great detail, the cellular responses induced by repeated or combined stimulations are complex and less understood. Growth factor receptors on the cell surface of hepatocytes were shown to be regulated by receptor interactions, receptor trafficking and feedback regulation. Here, we exemplify how mechanistic mathematical modelling based on quantitative data can be employed to disentangle these interactions at the molecular level. Crucial is the analysis at a mechanistic level based on quantitative longitudinal data within a mathematical framework. In such multi-layered information, step-wise mathematical modelling using submodules is of advantage, which is fostered by sharing of standardized experimental data and mathematical models. Integration of signal transduction with metabolic regulation in the liver and mechanistic links to translational approaches promise to provide predictive tools for biology and personalized medicine.

Authors: Lorenza A. D’Alessandro, Ursula Klingmüller, Marcel Schilling

Date Published: 30th Jun 2022

Publication Type: Journal

Abstract (Expand)

The Hedgehog signaling pathway regulates many processes during embryogenesis and the homeostasis of adult organs. Recent data suggest that central metabolic processes and signaling cascades in the liver are controlled by the Hedgehog pathway and that changes in hepatic Hedgehog activity also affect peripheral tissues, such as the reproductive organs in females. Here, we show that hepatocyte-specific deletion of the Hedgehog pathway is associated with the dramatic expansion of adipose tissue in mice, the overall phenotype of which does not correspond to the classical outcome of insulin resistance-associated diabetes type 2 obesity. Rather, we show that alterations in the Hedgehog signaling pathway in the liver lead to a metabolic phenotype that is resembling metabolically healthy obesity. Mechanistically, we identified an indirect influence on the hepatic secretion of the fibroblast growth factor 21, which is regulated by a series of signaling cascades that are directly transcriptionally linked to the activity of the Hedgehog transcription factor GLI1. The results of this study impressively show that the metabolic balance of the entire organism is maintained via the activity of morphogenic signaling pathways, such as the Hedgehog cascade. Obviously, several pathways are orchestrated to facilitate liver metabolic status to peripheral organs, such as adipose tissue.

Authors: F. Ott, C. Korner, K. Werner, M. Gericke, I. Liebscher, D. Lobsien, S. Radrezza, A. Shevchenko, U. Hofmann, J. Kratzsch, R. Gebhardt, T. Berg, M. Matz-Soja

Date Published: 18th May 2022

Publication Type: Journal

Abstract (Expand)

Objective Multidrug resistance protein 2 (MRP2) is a bottleneck in bilirubin excretion. Its loss is sufficient to induce hyperbilirubinaemia, a prevailing characteristic of acute liver failure (ALF) characteristic of acute liver failure (ALF) that is closely associated with clinical outcome. This study scrutinises the transcriptional regulation of MRP2 under different pathophysiological conditions. Design Hepatic MRP2, farnesoid X receptor (FXR) and Forkhead box A2 (FOXA2) expression and clinicopathologic associations were examined by immunohistochemistry in 14 patients with cirrhosis and 22 patients with ALF. MRP2 regulatory mechanisms were investigated in primary hepatocytes, Fxr −/− mice and lipopolysaccharide (LPS)-treated mice. Results Physiologically, homeostatic MRP2 transcription is mediated by the nuclear receptor FXR/retinoid X receptor complex. Fxr −/− mice lack apical MRP2 expression and rapidly progress into hyperbilirubinaemia. In patients with ALF, hepatic FXR expression is undetectable, however, patients without infection maintain apical MRP2 expression and do not suffer from hyperbilirubinaemia. These patients express FOXA2 in hepatocytes. FOXA2 upregulates MRP2 transcription through binding to its promoter. Physiologically, nuclear FOXA2 translocation is inhibited by insulin. In ALF, high levels of glucagon and tumour necrosis factor α induce FOXA2 expression and nuclear translocation in hepatocytes. Impressively, ALF patients with sepsis express low levels of FOXA2, lose MRP2 expression and develop severe hyperbilirubinaemia. In this case, LPS inhibits FXR expression, induces FOXA2 nuclear exclusion and thus abrogates the compensatory MRP2 upregulation. In both Fxr −/− and LPS-treated mice, ectopic FOXA2 expression restored apical MRP2 expression and normalised serum bilirubin levels. Conclusion FOXA2 replaces FXR to maintain MRP2 expression in ALF without sepsis. Ectopic FOXA2 expression to maintain MRP2 represents a potential strategy to prevent hyperbilirubinaemia in septic ALF.

Authors: Sai Wang, Rilu Feng, Shan Shan Wang, Hui Liu, Chen Shao, Yujia Li, Frederik Link, Stefan Munker, Roman Liebe, Christoph Meyer, Elke Burgermeister, Matthias Ebert, Steven Dooley, Huiguo Ding, Honglei Weng

Date Published: 20th Apr 2022

Publication Type: Journal

Abstract

Not specified

Authors: Yujia Li, Weiguo Fan, Frederik Link, Sai Wang, Steven Dooley

Date Published: 1st Feb 2022

Publication Type: Journal

Abstract

Not specified

Authors: Steven Dooley, Jonel Trebicka, Sebastian Mueller

Date Published: 18th Jan 2022

Publication Type: Journal

Abstract (Expand)

Abstract Chronic alcohol consumption induces stress and damage in alcohol metabolising hepatocytes, which leads to inflammatory and fibrogenic responses. Besides these direct effects, alcohol disruptsffects, alcohol disrupts intestinal barrier functions and induces gut microbial dysbiosis, causing translocation of bacteria or microbial products through the gut mucosa to the liver and, which induce inflammation indirectly. Inflammation is one of the key drivers of alcohol-associated liver disease progression from steatosis to severe alcoholic hepatitis. The current standard of care for the treatment of severe alcoholic hepatitis is prednisolone, aiming to reduce inflammation. Prednisolone, however improves only short-term but not long-term survival rates in those patients, and even increases the risk for bacterial infections. Thus, recent studies focus on the exploration of more specific inflammatory targets for the treatment of severe alcoholic hepatitis. These comprise, among others interference with inflammatory cytokines, modulation of macrophage phenotypes or targeting of immune cell communication, as summarized in the present overview. Although several approaches give promising results in preclinical studies, data robustness and ability to transfer experimental results to human disease is still not sufficient for effective clinical translation.

Authors: Sophie Lotersztajn, Antonio Riva, Sai Wang, Steven Dooley, Shilpa Chokshi, Bin Gao

Date Published: 18th Jan 2022

Publication Type: Journal

Abstract (Expand)

Abstract Alcohol-related liver disease (ALD) impacts millions of patients worldwide each year and the numbers are increasing. Disease stages range from steatosis via steatohepatitis and fibrosis toepatitis and fibrosis to cirrhosis, severe alcohol-associated hepatitis and liver cancer. ALD is usually diagnosed at an advanced stage of progression with no effective therapies. A major research goal is to improve diagnosis, prognosis and also treatments for early ALD. This however needs prioritization of this disease for financial investment in basic and clinical research to more deeply investigate mechanisms and identify biomarkers and therapeutic targets for early detection and intervention. Topics of interest are communication of the liver with other organs of the body, especially the gut microbiome, the individual genetic constitution, systemic and liver innate inflammation, including bacterial infections, as well as fate and number of hepatic stellate cells and the composition of the extracellular matrix in the liver. Additionally, mechanical forces and damaging stresses towards the sophisticated vessel system of the liver, including the especially equipped sinusoidal endothelium and the biliary tract, work together to mediate hepatocytic import and export of nutritional and toxic substances, adapting to chronic liver disease by morphological and functional changes. All the aforementioned parameters contribute to the outcome of alcohol use disorder and the risk to develop advanced disease stages including cirrhosis, severe alcoholic hepatitis and liver cancer. In the present collection, we summarize current knowledge on these alcohol-related liver disease parameters, excluding the aspect of inflammation, which is presented in the accompanying review article by Lotersztajn and colleagues.

Authors: Bernd Schnabl, Gavin E. Arteel, Felix Stickel, Jan Hengstler, Nachiket Vartak, Ahmed Ghallab, Steven Dooley, Yujia Li, Robert F. Schwabe

Date Published: 18th Jan 2022

Publication Type: Journal

Abstract (Expand)

Abstract Summary Mass spectrometry-based proteomics is increasingly employed in biology and medicine. To generate reliable information from large datasets and ensure comparability of results, it isrge datasets and ensure comparability of results, it is crucial to implement and standardize the quality control of the raw data, the data processing steps and the statistical analyses. MSPypeline provides a platform for importing MaxQuant output tables, generating quality control reports, data preprocessing including normalization and performing exploratory analyses by statistical inference plots. These standardized steps assess data quality, provide customizable figures and enable the identification of differentially expressed proteins to reach biologically relevant conclusions. Availability and implementation The source code is available under the MIT license at https://github.com/siheming/mspypeline with documentation at https://mspypeline.readthedocs.io. Benchmark mass spectrometry data are available on ProteomeXchange (PXD025792). Supplementary information Supplementary data are available at Bioinformatics Advances online.

Authors: Simon Heming, Pauline Hansen, Artyom Vlasov, Florian Schwörer, Stephen Schaumann, Paulina Frolovaitė, Wolf-Dieter Lehmann, Jens Timmer, Marcel Schilling, Barbara Helm, Ursula Klingmüller

Date Published: 2022

Publication Type: Journal

Abstract

Not specified

Authors: Lenka Belicova, Urska Repnik, Julien Delpierre, Elzbieta Gralinska, Sarah Seifert, José Ignacio Valenzuela, Hernán Andrés Morales-Navarrete, Christian Franke, Helin Räägel, Evgeniya Shcherbinina, Tatiana Prikazchikova, Victor Koteliansky, Martin Vingron, Yannis L. Kalaidzidis, Timofei Zatsepin, Marino Zerial

Date Published: 4th Oct 2021

Publication Type: Journal

Abstract

Not specified

Authors: Nachiket Vartak, Dirk Drasdo, Fabian Geisler, Tohru Itoh, Ronald P.J. Oude Elferink, Stan F.J. van de Graaf, John Chiang, Verena Keitel, Michael Trauner, Peter Jansen, Jan G Hengstler

Date Published: 23rd Jun 2021

Publication Type: Journal

Abstract (Expand)

The liver has the remarkable capacity to regenerate. In the clinic, this capacity can be induced by portal vein embolization (PVE), which redirects portal blood flow resulting in liver hypertrophy inpertrophy in locations with increased blood supply, and atrophy of embolized segments. Here we apply single-cell and single-nucleus transcriptomics on healthy, hypertrophied, and atrophied patient-derived liver samples to explore cell states in the liver during regeneration. We first establish an atlas of cell subtypes from the healthy human liver using fresh and frozen tissues, and then compare post-PVE samples with their reference counterparts. We find that PVE alters portal-central zonation of hepatocytes and endothelial cells. Embolization upregulates expression programs associated with development, cellular adhesion and inflammation across cell types. Analysis of interlineage crosstalk revealed key roles for immune cells in modulating regenerating tissue responses. Altogether, our data provides a rich resource for understanding homeostatic mechanisms arising during human liver regeneration and degeneration.

Authors: Agnieska Brazovskaja, Tomás Gomes, Christiane Körner, Zhisong He, Theresa Schaffer, Julian Connor Eckel, René Hänsel, Malgorzata Santel, Timm Denecke, Michael Dannemann, Mario Brosch, Jochen Hampe, Daniel Seehofer, Georg Damm, J. Gray Camp, Barbara Treutlein

Date Published: 3rd Jun 2021

Publication Type: Journal

Abstract (Expand)

COVID-19 poses a major challenge to individuals and societies around the world. Yet, it is difficult to obtain a good overview of studies across different medical fields of research such as clinical trials, epidemiology, and public health. Here, we describe a consensus metadata model to facilitate structured searches of COVID-19 studies and resources along with its implementation in three linked complementary web-based platforms. A relational database serves as central study metadata hub that secures compatibilities with common trials registries (e.g. ICTRP and standards like HL7 FHIR, CDISC ODM, and DataCite). The Central Search Hub was developed as a single-page application, the other two components with additional frontends are based on the SEEK platform and MICA, respectively. These platforms have different features concerning cohort browsing, item browsing, and access to documents and other study resources to meet divergent user needs. By this we want to promote transparent and harmonized COVID-19 research.

Authors: C. O. Schmidt, J. Darms, A. Shutsko, M. Lobe, R. Nagrani, B. Seifert, B. Lindstadt, M. Golebiewski, S. Koleva, T. Bender, C. R. Bauer, U. Sax, X. Hu, M. Lieser, V. Junker, S. Klopfenstein, A. Zeleke, D. Waltemath, I. Pigeot, J. Fluck

Date Published: 27th May 2021

Publication Type: Journal

Abstract (Expand)

BACKGROUND & AIMS: Bacterial infections (BI) affect the natural course of cirrhosis and were suggested to be a landmark event marking the transition to the decompensated stage. Our specific aim was to evaluate the impact of BI on the natural history of compensated cirrhosis. METHODS: We analyzed 858 patients with cirrhosis, evaluated for the INCA trial (EudraCT 2013-001626-26) in 2 academic medical centers between February 2014 and May 2019. Only patients with previously compensated disease were included. They were divided into 4 groups: compensated without BI, compensated with BI, 1st decompensation without BI, and 1st decompensation with BI. RESULTS: About 425 patients (median 61 [53-69] years) were included in the final prospective analysis. At baseline, 257 patients were compensated (12 [4.7%] with BI), whereas 168 patients presented with their 1st decompensation (42 [25.0%] with BI). In patients who remained compensated MELD scores were similar in those with and without BI. Patients with their first decompensation and BI had higher MELD scores than those without BI. Amongst patients who remained compensated, BI had no influence on transplant-free survival, whereas patients with their 1st decompensation and concurrent BI had significantly reduced transplant-free survival as compared with those without BI. The development of BI or decompensation during follow-up had a greater impact on survival than each of these complications at baseline. CONCLUSIONS: In compensated patients with cirrhosis, the 1st decompensation associated to BI has worse survival than decompensation without BI. By contrast, BI without decompensation does not negatively impact survival of patients with compensated cirrhosis.

Authors: M. C. Reichert, C. Schneider, R. Greinert, M. Casper, F. Grunhage, A. Wienke, A. Zipprich, F. Lammert, C. Ripoll

Date Published: 1st Mar 2021

Publication Type: Journal

Abstract

Not specified

Authors: Leonard Schmiester, Yannik Schälte, Frank T. Bergmann, Tacio Camba, Erika Dudkin, Janine Egert, Fabian Fröhlich, Lara Fuhrmann, Adrian L. Hauber, Svenja Kemmer, Polina Lakrisenko, Carolin Loos, Simon Merkt, Wolfgang Müller, Dilan Pathirana, Elba Raimúndez, Lukas Refisch, Marcus Rosenblatt, Paul L. Stapor, Philipp Städter, Dantong Wang, Franz-Georg Wieland, Julio R. Banga, Jens Timmer, Alejandro F. Villaverde, Sven Sahle, Clemens Kreutz, Jan Hasenauer, Daniel Weindl

Date Published: 26th Jan 2021

Publication Type: Journal

Abstract (Expand)

Background Many functional analysis tools have been developed to extract functional and mechanistic insight from bulk transcriptome data. With the advent of single-cell RNA sequencing (scRNA-seq), it is in principle possible to do such an analysis for single cells. However, scRNA-seq data has characteristics such as drop-out events and low library sizes. It is thus not clear if functional TF and pathway analysis tools established for bulk sequencing can be applied to scRNA-seq in a meaningful way. Results To address this question, we perform benchmark studies on simulated and real scRNA-seq data. We include the bulk-RNA tools PROGENy, GO enrichment, and DoRothEA that estimate pathway and transcription factor (TF) activities, respectively, and compare them against the tools SCENIC/AUCell and metaVIPER, designed for scRNA-seq. For the in silico study, we simulate single cells from TF/pathway perturbation bulk RNA-seq experiments. We complement the simulated data with real scRNA-seq data upon CRISPR-mediated knock-out. Our benchmarks on simulated and real data reveal comparable performance to the original bulk data. Additionally, we show that the TF and pathway activities preserve cell type-specific variability by analyzing a mixture sample sequenced with 13 scRNA-seq protocols. We also provide the benchmark data for further use by the community. Conclusions Our analyses suggest that bulk-based functional analysis tools that use manually curated footprint gene sets can be applied to scRNA-seq data, partially outperforming dedicated single-cell tools. Furthermore, we find that the performance of functional analysis tools is more sensitive to the gene sets than to the statistic used.

Authors: Christian H. Holland, Jovan Tanevski, Javier Perales-Patón, Jan Gleixner, Manu P. Kumar, Elisabetta Mereu, Brian A. Joughin, Oliver Stegle, Douglas A. Lauffenburger, Holger Heyn, Bence Szalai, Julio Saez-Rodriguez

Date Published: 1st Dec 2020

Publication Type: Journal

Abstract (Expand)

While the role of cholesterol in liver carcinogenesis remains controversial, hepatocellular carcinoma generally prevails in males. Herein, we uncover pathways of female-prevalent progression to hepatocellular carcinoma due to chronic repression of cholesterogenic lanosterol 14alpha-demethylase (CYP51) in hepatocytes. Tumors develop in knock-out mice after year one, with 2:1 prevalence in females. Metabolic and transcription factor networks were deduced from the liver transcriptome data, combined by sterol metabolite and blood parameter analyses, and interpreted with relevance to humans. Female knock-outs show increased plasma cholesterol and HDL, dampened lipid-related transcription factors FXR, LXRalpha:RXRalpha, and importantly, crosstalk between reduced LXRalpha and activated TGF-beta signalling, indicating a higher susceptibility to HCC in aging females. PI3K/Akt signalling and ECM-receptor interaction are common pathways that are disturbed by sex-specific altered genes. Additionally, transcription factors (SOX9)2 and PPARalpha were recognized as important for female hepatocarcinogenesis, while overexpressed Cd36, a target of nuclear receptor RORC, is a new male-related regulator of ECM-receptor signalling in hepatocarcinogenesis. In conclusion, we uncover the sex-dependent metabolic reprogramming of cholesterol-related pathways that predispose for hepatocarcinogenesis in aging females. This is important in light of increased incidence of liver cancers in post-menopausal women.

Authors: K. B. Cokan, Z. Urlep, G. Lorbek, M. Matz-Soja, C. Skubic, M. Perse, J. Jeruc, P. Juvan, T. Rezen, D. Rozman

Date Published: 9th Nov 2020

Publication Type: Journal

Abstract (Expand)

We describe a large-scale community effort to build an open-access, interoperable, and computable repository of COVID-19 molecular mechanisms - the COVID-19 Disease Map. We discuss the tools, platforms, and guidelines necessary for the distributed development of its contents by a multi-faceted community of biocurators, domain experts, bioinformaticians, and computational biologists. We highlight the role of relevant databases and text mining approaches in enrichment and validation of the curated mechanisms. We describe the contents of the Map and their relevance to the molecular pathophysiology of COVID-19 and the analytical and computational modelling approaches that can be applied for mechanistic data interpretation and predictions. We conclude by demonstrating concrete applications of our work through several use cases and highlight new testable hypotheses.

Authors: Marek Ostaszewski, Anna Niarakis, Alexander Mazein, Inna Kuperstein, Robert Phair, Aurelio Orta-Resendiz, Vidisha Singh, Sara Sadat Aghamiri, Marcio Luis Acencio, Enrico Glaab, Andreas Ruepp, Gisela Fobo, Corinna Montrone, Barbara Brauner, Goar Frishman, Luis Cristóbal Monraz Gómez, Julia Somers, Matti Hoch, Shailendra Kumar Gupta, Julia Scheel, Hanna Borlinghaus, Tobias Czauderna, Falk Schreiber, Arnau Montagud, Miguel Ponce de Leon, Akira Funahashi, Yusuke Hiki, Noriko Hiroi, Takahiro G. Yamada, Andreas Dräger, Alina Renz, Muhammad Naveez, Zsolt Bocskei, Francesco Messina, Daniela Börnigen, Liam Fergusson, Marta Conti, Marius Rameil, Vanessa Nakonecnij, Jakob Vanhoefer, Leonard Schmiester, Muying Wang, Emily E. Ackerman, Jason Shoemaker, Jeremy Zucker, Kristie Oxford, Jeremy Teuton, Ebru Kocakaya, Gökçe Yağmur Summak, Kristina Hanspers, Martina Kutmon, Susan Coort, Lars Eijssen, Friederike Ehrhart, D. A. B. Rex, Denise Slenter, Marvin Martens, Nhung Pham, Robin Haw, Bijay Jassal, Lisa Matthews, Marija Orlic-Milacic, Andrea Senff Ribeiro, Karen Rothfels, Veronica Shamovsky, Ralf Stephan, Cristoffer Sevilla, Thawfeek Varusai, Jean-Marie Ravel, Rupsha Fraser, Vera Ortseifen, Silvia Marchesi, Piotr Gawron, Ewa Smula, Laurent Heirendt, Venkata Satagopam, Guanming Wu, Anders Riutta, Martin Golebiewski, Stuart Owen, Carole Goble, Xiaoming Hu, Rupert W. Overall, Dieter Maier, Angela Bauch, Benjamin M. Gyori, John A. Bachman, Carlos Vega, Valentin Grouès, Miguel Vazquez, Pablo Porras, Luana Licata, Marta Iannuccelli, Francesca Sacco, Anastasia Nesterova, Anton Yuryev, Anita de Waard, Denes Turei, Augustin Luna, Ozgun Babur, Sylvain Soliman, Alberto Valdeolivas, Marina Esteban- Medina, Maria Peña-Chilet, Kinza Rian, Tomáš Helikar, Bhanwar Lal Puniya, Dezso Modos, Agatha Treveil, Marton Olbei, Bertrand De Meulder, Aurélien Dugourd, Aurélien Naldi, Vincent Noë, Laurence Calzone, Chris Sander, Emek Demir, Tamas Korcsmaros, Tom C. Freeman, Franck Augé, Jacques S. Beckmann, Jan Hasenauer, Olaf Wolkenhauer, Egon L. Wilighagen, Alexander R. Pico, Chris T. Evelo, Marc E. Gillespie, Lincoln D. Stein, Henning Hermjakob, Peter D’Eustachio, Julio Saez-Rodriguez, Joaquin Dopazo, Alfonso Valencia, Hiroaki Kitano, Emmanuel Barillot, Charles Auffray, Rudi Balling, Reinhard Schneider

Date Published: 28th Oct 2020

Publication Type: Misc

Abstract (Expand)

BACKGROUND: Transarterial chemoembolization (TACE) is an important therapy for hepatocellular carcinoma (HCC) in cirrhosis. In particular in advanced cirrhosis, post-TACE hepatic failure liver (PTHF) failure may develop. Currently, there is no standardization for the periinterventional risk assessment. The liver maximum capacity (LiMAx) test assesses the functional liver capacity, but has not been investigated in this setting. AIMS: The aim of this study was to prospectively evaluate periinterventional LiMAx and CT volumetry measurements in patients with cirrhosis and HCC undergoing repetitive TACE. METHODS: From 06/2016 to 11/2017, eleven patients with HCC and cirrhosis undergoing TACE were included. LiMAx measurements (n = 42) were conducted before and after each TACE. Laboratory parameters were correlated with the volume-function data. RESULTS: The median LiMAx levels before (276 +/- 166 microg/kg/h) were slightly reduced after TACE (251 +/- 122 microg/kg/h; p = 0.08). This corresponded to a median drop of 7.1%. Notably, there was a significant correlation between LiMAx levels before TACE and bilirubin (but not albumin nor albumin-bilirubin [ALBI] score) increase after TACE (p = 0.02, k = 0.56). Furthermore, a significantly higher increase in bilirubin in patients with LiMAx </= 150 microg/kg/h was observed (p = 0.011). LiMAx levels at different time points in single patients were similar (p = 0.2). CONCLUSION: In our prospective pilot study in patients with HCC and cirrhosis undergoing multiple TACE, robust and reliable LiMAx measurements were demonstrated. Lower LiMAx levels before TACE were associated with surrogate markers (bilirubin) of liver failure after TACE. Specific subgroups at high risk of PTHF should be investigated. This might facilitate the future development of strategies to prevent occurrence of PTHF.

Authors: M. C. Reichert, A. Massmann, A. Schulz, A. Buecker, M. Glanemann, F. Lammert, M. Malinowski

Date Published: 21st Aug 2020

Publication Type: Journal

Abstract (Expand)

AIMS: Unlike other Toll-like receptors (TLRs), the role of toll like receptor 2 (TLR-2) in the pathogenesis of chronic liver disease and hepatocellular carcinoma (HCC) is not well studied. We, therefore, set out to investigate the expression of TLR-2 in different chronic liver disease states along with other markers of cell death, cellular proliferation and tissue vascularisation METHODS AND RESULTS: Immunohistochemistry was performed on liver tissue microarrays comprising hepatitis, cirrhosis and HCC patient samples using antibodies against TLR-2, Ki-67, Caspase-3 and VEGF. This was done in order to characterise receptor expression and translocation, apoptosis, cell proliferation and vascularisation. Cytoplasmic TLR-2 expression was found to be weak in 5/8 normal liver cases, 10/19 hepatitis cases and 8/21 cirrhosis patients. Moderate to strong TLR-2 expression was observed in some cases of hepatitis and cirrhosis. Both, nuclear and cytoplasmic TLR-2 expression was present in HCC with weak intensity in 11/41 cases, and moderate to strong staining in 19/41 cases. Eleven HCC cases were TLR-2 negative. Surprisingly, both cytoplasmic and nuclear TLR-2 expression in HCC were found to significantly correlate with proliferative index (r = 0.24 and 0.37), Caspase-3 expression (r = 0.27 and 0.38) and vascularisation (r = 0.56 and 0.23). Further, nuclear TLR-2 localisation was predominant in HCC, whereas cytoplasmic expression was more prevalent in hepatitis and cirrhosis. Functionally, treatment of HUH7 HCC cells with a TLR-2 agonist induced the expression of cellular proliferation and vascularisation markers CD34 and VEGF. CONCLUSIONS: Our results demonstrate a positive correlation between the expression of TLR-2 and other markers of proliferation and vascularisation in HCC which suggests a possible role for TLR-2 in HCC pathogenesis.

Authors: F. E. A. Mohamed, S. Hammad, T. V. Luong, B. Dewidar, R. Al-Jehani, N. Davies, S. Dooley, R. Jalan

Date Published: 25th Jul 2020

Publication Type: Journal

Abstract (Expand)

Despite the ever-progressing technological advances in producing data in health and clinical research, the generation of new knowledge for medical benefits through advanced analytics still lags behind its full potential. Reasons for this obstacle are the inherent heterogeneity of data sources and the lack of broadly accepted standards. Further hurdles are associated with legal and ethical issues surrounding the use of personal/patient data across disciplines and borders. Consequently, there is a need for broadly applicable standards compliant with legal and ethical regulations that allow interpretation of heterogeneous health data through in silico methodologies to advance personalized medicine. To tackle these standardization challenges, the Horizon2020 Coordinating and Support Action EU-STANDS4PM initiated an EU-wide mapping process to evaluate strategies for data integration and data-driven in silico modelling approaches to develop standards, recommendations and guidelines for personalized medicine. A first step towards this goal is a broad stakeholder consultation process initiated by an EU-STANDS4PM workshop at the annual COMBINE meeting (COMBINE 2019 workshop report in same issue). This forum analysed the status quo of data and model standards and reflected on possibilities as well as challenges for cross-domain data integration to facilitate in silico modelling approaches for personalized medicine.

Authors: S. Brunak, C. Bjerre Collin, K. Eva O Cathaoir, M. Golebiewski, M. Kirschner, I. Kockum, H. Moser, D. Waltemath

Date Published: 24th Jul 2020

Publication Type: Journal

Abstract (Expand)

Systems biology has experienced dramatic growth in the number, size and complexity of computational models describing biology. To reproduce simulation results and reuse models, researchers need to exchange precise and unambiguous descriptions of model structure and meaning. SBML (the Systems Biology Markup Language) is a community-developed format for this purpose. The latest edition, called SBML Level 3, has a modular structure, with a core suited to representing reaction-based models, and packages that extend the core with features suited for a variety of model types. Examples include constraint-based models, reaction-diffusion models, logical network models, and rule-based models. SBML and its rich software ecosystem have transformed the way systems biologists build and interact with models, and has played an important role in increasing model interoperability and reuse over the past two decades. More recently, a rise of multiscale models of whole cells and organs, and new data sources such as single cells measurements and live imaging, have precipitated new ways of integrating data and models. SBML Level 3 provides the foundation needed to support this evolution.

Authors: SM Keating, D Waltemath, M König, F Zhang, A Dräger, C Chaouiya, FT Bergmann, A Finney, CS Gillespie, T Helikar, S Hoops, RS Malik-Sheriff, SL Moodie, II Moraru, CJ Myers, A Naldi, BG Olivier, S Sahle, JC Schaff, LP Smith, MJ Swat, DT, L Watanabe, DJ Wilkinson, ML Blinov, K Begley, JR Faeder, HF Gómez, TM Hamm, Y Inagaki, W Liebermeister, AL Lister, D Lucio, E Mjolsness, CJ Proctor, K Raman, N Rodriguez, CA Shaffer, BE Shapiro, J Stelling, N Swainston, N Tanimura, J Wagner, M Meier-Schellersheim, HM Sauro, B Palsson, H Bolouri, H Kitano, Akira Funahashi, H Hermjakob, JC Doyle, M Hucka, SBML Community members

Date Published: 1st Jul 2020

Publication Type: Journal

Abstract (Expand)

This paper presents a report on outcomes of the 10th Computational Modeling in Biology Network (COMBINE) meeting that was held in Heidelberg, Germany, in July of 2019. The annual event brings together researchers, biocurators and software engineers to present recent results and discuss future work in the area of standards for systems and synthetic biology. The COMBINE initiative coordinates the development of various community standards and formats for computational models in the life sciences. Over the past 10 years, COMBINE has brought together standard communities that have further developed and harmonized their standards for better interoperability of models and data. COMBINE 2019 was co-located with a stakeholder workshop of the European EU-STANDS4PM initiative that aims at harmonized data and model standardization for in silico models in the field of personalized medicine, as well as with the FAIRDOM PALs meeting to discuss findable, accessible, interoperable and reusable (FAIR) data sharing. This report briefly describes the work discussed in invited and contributed talks as well as during breakout sessions. It also highlights recent advancements in data, model, and annotation standardization efforts. Finally, this report concludes with some challenges and opportunities that this community will face during the next 10 years.

Authors: Dagmar Waltemath, Martin Golebiewski, Michael L Blinov, Padraig Gleeson, Henning Hermjakob, Michael Hucka, Esther Thea Inau, Sarah M Keating, Matthias König, Olga Krebs, Rahuman S Malik-Sheriff, David Nickerson, Ernst Oberortner, Herbert M Sauro, Falk Schreiber, Lucian Smith, Melanie I Stefan, Ulrike Wittig, Chris J Myers

Date Published: 29th Jun 2020

Publication Type: Journal

Abstract (Expand)

This special issue of the Journal of Integrative Bioinformatics presents papers related to the 10th COMBINE meeting together with the annual update of COMBINE standards in systems and synthetic biology.Not specified

Authors: Falk Schreiber, Björn Sommer, Tobias Czauderna, Martin Golebiewski, Thomas E. Gorochowski, Michael Hucka, Sarah M. Keating, Matthias König, Chris Myers, David Nickerson, Dagmar Waltemath

Date Published: 29th Jun 2020

Publication Type: Journal

Abstract (Expand)

OBJECTIVE: The rs641738C>T variant located near the membrane-bound O-acyltransferase domain containing 7 (MBOAT7) locus is associated with fibrosis in liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcohol-related liver disease, hepatitis B and C. We aim to understand the mechanism by which the rs641738C>T variant contributes to pathogenesis of NAFLD. DESIGN: Mice with hepatocyte-specific deletion of MBOAT7 (Mboat7(Deltahep)) were generated and livers were characterised by histology, flow cytometry, qPCR, RNA sequencing and lipidomics. We analysed the association of rs641738C>T genotype with liver inflammation and fibrosis in 846 NAFLD patients and obtained genotype-specific liver lipidomes from 280 human biopsies. RESULTS: Allelic imbalance analysis of heterozygous human liver samples pointed to lower expression of the MBOAT7 transcript on the rs641738C>T haplotype. Mboat7(Deltahep) mice showed spontaneous steatosis characterised by increased hepatic cholesterol ester content after 10 weeks. After 6 weeks on a high fat, methionine-low, choline-deficient diet, mice developed increased hepatic fibrosis as measured by picrosirius staining (p<0.05), hydroxyproline content (p<0.05) and transcriptomics, while the inflammatory cell populations and inflammatory mediators were minimally affected. In a human biopsied NAFLD cohort, MBOAT7 rs641738C>T was associated with fibrosis (p=0.004) independent of the presence of histological inflammation. Liver lipidomes of Mboat7(Deltahep) mice and human rs641738TT carriers with fibrosis showed increased total lysophosphatidylinositol levels. The altered lysophosphatidylinositol and phosphatidylinositol subspecies in MBOAT7(Deltahep) livers and human rs641738TT carriers were similar. CONCLUSION: Mboat7 deficiency in mice and human points to an inflammation-independent pathway of liver fibrosis that may be mediated by lipid signalling and a potentially targetable treatment option in NAFLD.

Authors: V. R. Thangapandi, O. Knittelfelder, M. Brosch, E. Patsenker, O. Vvedenskaya, S. Buch, S. Hinz, A. Hendricks, M. Nati, A. Herrmann, D. R. Rekhade, T. Berg, M. Matz-Soja, K. Huse, E. Klipp, J. K. Pauling, J. A. Wodke, J. Miranda Ackerman, M. V. Bonin, E. Aigner, C. Datz, W. von Schonfels, S. Nehring, S. Zeissig, C. Rocken, A. Dahl, T. Chavakis, F. Stickel, A. Shevchenko, C. Schafmayer, J. Hampe, P. Subramanian

Date Published: 26th Jun 2020

Publication Type: Journal

Abstract (Expand)

A standardized approach to annotating computational biomedical models and their associated files can facilitate model reuse and reproducibility among research groups, enhance search and retrieval of models and data, and enable semantic comparisons between models. Motivated by these potential benefits and guided by consensus across the COmputational Modeling in BIology NEtwork (COMBINE) community, we have developed a specification for encoding annotations in Open Modeling and EXchange (OMEX)-formatted archives. Distributing modeling projects within these archives is a best practice established by COMBINE, and the OMEX metadata specification presented here provides a harmonized, community-driven approach for annotating a variety of standardized model and data representation formats within an archive. The specification primarily includes technical guidelines for encoding archive metadata, so that software tools can more easily utilize and exchange it, thereby spurring broad advancements in model reuse, discovery, and semantic analyses.

Authors: Maxwell L. Neal, John H. Gennari, Dagmar Waltemath, David P. Nickerson, Matthias König

Date Published: 25th Jun 2020

Publication Type: Journal

Abstract (Expand)

Small‐molecule flux in tissue‐microdomains is essential for organ function, but knowledge of this process is scant due to the lack of suitable methods. We developed two independent techniques that allow the quantification of advection (flow) and diffusion in individual bile canaliculi and in interlobular bile ducts of intact livers in living mice, namely Fluorescence Loss After Photoactivation (FLAP) and Intravital Arbitrary Region Image Correlation Spectroscopy (IVARICS). The results challenge the prevailing ‘mechano‐osmotic’ theory of canalicular bile flow. After active transport across hepatocyte membranes bile acids are transported in the canaliculi primarily by diffusion. Only in the interlobular ducts, diffusion is augmented by regulatable advection. Photoactivation of fluorescein bis‐(5‐carboxymethoxy‐2‐nitrobenzyl)‐ether (CMNB‐caged fluorescein) in entire lobules demonstrated the establishment of diffusive gradients in the bile canalicular network and the sink function of interlobular ducts. In contrast to the bile canalicular network, vectorial transport was detected and quantified in the mesh of interlobular bile ducts. In conclusion, the liver consists of a diffusion dominated canalicular domain, where hepatocytes secrete small molecules and generate a concentration gradient and a flow‐augmented ductular domain, where regulated water influx creates unidirectional advection that augments the diffusive flux.

Authors: Nachiket Vartak, Georgia Guenther, Florian Joly, Amruta Damle‐Vartak, Gudrun Wibbelt, Jörns Fickel, Simone Jörs, Brigitte Begher‐Tibbe, Adrian Friebel, Kasimir Wansing, Ahmed Ghallab, Marie Rosselin, Noemie Boissier, Irene Vignon‐Clementel, Christian Hedberg, Fabian Geisler, Heribert Hofer, Peter Jansen, Stefan Hoehme, Dirk Drasdo, Jan G. Hengstler

Date Published: 19th Jun 2020

Publication Type: Journal

Abstract

Not specified

Authors: Bjoern Goldenbogen, Stephan O. Adler, Oliver Bodeit, Judith AH Wodke, Aviv Korman, Lasse Bonn, Ximena Martinez de la Escalera, Johanna E L Haffner, Maria Krantz, Maxim Karnetzki, Ivo Maintz, Lisa Mallis, Rafael U Moran Torres, Hannah Prawitz, Patrick Segelitz, Martin Seeger, Rune Linding, Edda Klipp

Date Published: 6th May 2020

Publication Type: Unpublished

Abstract (Expand)

Lipid-based RNA nanocarriers have been recently accepted as a novel therapeutic option in humans, thus increasing the therapeutic options for patients. Tailored nanomedicines will enable to treat chronic liver disease (CLD) and end-stage liver cancer, disorders with high mortality and few treatment options. Here, we investigated the curative potential of gene therapy of a key molecule in CLD, the c-Jun N-terminal kinase-2 (Jnk2). Delivery to hepatocytes was achieved using a lipid-based clinically employable siRNA formulation that includes a cationic aminolipid to knockdown Jnk2 (named siJnk2). After assessing the therapeutic potential of siJnk2 treatment, non-invasive imaging demonstrated reduced apoptotic cell death and improved hepatocarcinogenesis was evidenced by improved liver parenchyma as well as ameliorated markers of hepatic damage, reduced fibrogenesis in 1-year-old mice. Strikingly, chronic siJnk2 treatment reduced premalignant nodules, indicative of tumor initiation. Furthermore, siJnk2 treatment led to a significant activation of the immune cell compartment. In conclusion, Jnk2 knockdown in hepatocytes ameliorated hepatitis, fibrogenesis, and initiation of hepatocellular carcinoma (HCC), and hence might be a suitable therapeutic option, to define novel molecular targets for precision medicine in CLD.

Authors: Marius Maximilian Woitok, Miguel Eugenio Zoubek, Dennis Doleschel, Matthias Bartneck, Mohamed Ramadan Mohamed, Fabian Kießling, Wiltrud Lederle, Christian Trautwein, Francisco Javier Cubero

Date Published: 1st May 2020

Publication Type: Journal

Abstract (Expand)

Protein modification with ISG15 (ISGylation) represents a major type I IFN-induced antimicrobial system. Common mechanisms of action and species-specific aspects of ISGylation, however, are still ill defined and controversial. We used a multiphasic coxsackievirus B3 (CV) infection model with a first wave resulting in hepatic injury of the liver, followed by a second wave culminating in cardiac damage. This study shows that ISGylation sets nonhematopoietic cells into a resistant state, being indispensable for CV control, which is accomplished by synergistic activity of ISG15 on antiviral IFIT1/3 proteins. Concurrent with altered energy demands, ISG15 also adapts liver metabolism during infection. Shotgun proteomics, in combination with metabolic network modeling, revealed that ISG15 increases the oxidative capacity and promotes gluconeogenesis in liver cells. Cells lacking the activity of the ISG15-specific protease USP18 exhibit increased resistance to clinically relevant CV strains, therefore suggesting that stabilizing ISGylation by inhibiting USP18 could be exploited for CV-associated human pathologies.

Authors: M. Kespohl, C. Bredow, K. Klingel, M. Voss, A. Paeschke, M. Zickler, W. Poller, Z. Kaya, J. Eckstein, H. Fechner, J. Spranger, M. Fahling, E. K. Wirth, L. Radoshevich, F. Thery, F. Impens, N. Berndt, K. P. Knobeloch, A. Beling

Date Published: 21st Mar 2020

Publication Type: Not specified

Abstract (Expand)

Early disease diagnosis is key to the effective treatment of diseases. Histopathological analysis of human biopsies is the gold standard to diagnose tissue alterations. However, this approach has low resolution and overlooks 3D (three-dimensional) structural changes resulting from functional alterations. Here, we applied multiphoton imaging, 3D digital reconstructions and computational simulations to generate spatially resolved geometrical and functional models of human liver tissue at different stages of non-alcoholic fatty liver disease (NAFLD). We identified a set of morphometric cellular and tissue parameters correlated with disease progression, and discover profound topological defects in the 3D bile canalicular (BC) network. Personalized biliary fluid dynamic simulations predicted an increased pericentral biliary pressure and micro-cholestasis, consistent with elevated cholestatic biomarkers in patients' sera. Our spatially resolved models of human liver tissue can contribute to high-definition medicine by identifying quantitative multiparametric cellular and tissue signatures to define disease progression and provide new insights into NAFLD pathophysiology.

Authors: F. Segovia-Miranda, H. Morales-Navarrete, M. Kucken, V. Moser, S. Seifert, U. Repnik, F. Rost, M. Brosch, A. Hendricks, S. Hinz, C. Rocken, D. Lutjohann, Y. Kalaidzidis, C. Schafmayer, L. Brusch, J. Hampe, M. Zerial

Date Published: 2nd Dec 2019

Publication Type: Not specified

Abstract

Not specified

Authors: Peter L. M. Jansen, Kai Breuhahn, Andreas Teufel, Steven Dooley

Date Published: 22nd Nov 2019

Publication Type: Not specified

Abstract (Expand)

BACKGROUND: Transjugular intrahepatic shunt (TIPSS) is placed in patients with variceal bleeding, refractory ascites, and for other indications. Postprocedural liver function-associated complications (LFAC), including hepatic encephalopathy (HE) and liver failure, represent a major setback. Current methods to predict complications are insufficient. OBJECTIVES: We investigated in a pilot study of patients prior TIPSS placement whether the risk of LFAC correlates with the functional reserve of the liver, as assessed by liver maximum function capacity (LiMAx) test. METHODS: Prospectively we included patients prior TIPSS placement between June 2016 and November 2017 at Saarland University Medical Center. LiMAx was conducted before and after TIPSS placement. Patients with HE prior TIPSS, as well as other factors predisposing to HE, including concomitant sedative drugs, current bacterial infections and sepsis, were excluded. Overt HE (OHE), LiMAx, and laboratory values were assessed before and after TIPSS placement. Data were analyzed in multivariate regression and AUROC models. RESULTS: Mean age was 60 +/- 8 years. Patients (n = 20) were mainly men (65%), and presented predominantly with Child-Pugh class B (90%). Indications for TIPSS were most commonly refractory ascites or recurrent variceal bleeding. In total, 40% of the patients developed LFAC after TIPSS placement. Expectedly, LiMAx decreased and serum bilirubin increased after TIPSS. LiMAx drop >/=20% was the only parameter predicting the development of LFAC after TIPSS in multivariate regression and AUROC analysis. CONCLUSIONS: In multivariate regression models and AUROC analysis, a drop in LiMAx predicted the development of LFAC after TIPSS placement. Additional larger studies assessing OHE and early liver failure separately are warranted.

Authors: M. C. Reichert, A. Schulz, A. Massmann, A. Buecker, M. Glanemann, F. Lammert, M. Malinowski

Date Published: 17th Oct 2019

Publication Type: Journal

Abstract (Expand)

Computational systems biology involves integrating heterogeneous datasets in order to generate models. These models can assist with understanding and prediction of biological phenomena. Generating datasets and integrating them into models involves a wide range of scientific expertise. As a result these datasets are often collected by one set of researchers, and exchanged with others researchers for constructing the models. For this process to run smoothly the data and models must be FAIR-findable, accessible, interoperable, and reusable. In order for data and models to be FAIR they must be structured in consistent and predictable ways, and described sufficiently for other researchers to understand them. Furthermore, these data and models must be shared with other researchers, with appropriately controlled sharing permissions, before and after publication. In this chapter we explore the different data and model standards that assist with structuring, describing, and sharing. We also highlight the popular standards and sharing databases within computational systems biology.

Authors: N. J. Stanford, M. Scharm, P. D. Dobson, M. Golebiewski, M. Hucka, V. B. Kothamachu, D. Nickerson, S. Owen, J. Pahle, U. Wittig, D. Waltemath, C. Goble, P. Mendes, J. Snoep

Date Published: 12th Oct 2019

Publication Type: Not specified

Abstract (Expand)

Transcriptome profiling followed by differential gene expression analysis often leads to lists of genes that are hard to analyze and interpret. Functional genomics tools are powerful approaches for downstream analysis, as they summarize the large and noisy gene expression space into a smaller number of biological meaningful features. In particular, methods that estimate the activity of processes by mapping transcripts level to process members are popular. However, footprints of either a pathway or transcription factor (TF) on gene expression show superior performance over mapping-based gene sets. These footprints are largely developed for humans and their usability in the broadly-used model organism Mus musculus is uncertain. Evolutionary conservation of the gene regulatory system suggests that footprints of human pathways and TFs can functionally characterize mice data. In this paper we analyze this hypothesis. We perform a comprehensive benchmark study exploiting two state-of-the-art footprint methods, DoRothEA and an extended version of PROGENy. These methods infer TF and pathway activity, respectively. Our results show that both can recover mouse perturbations, confirming our hypothesis that footprints are conserved between mice and humans. Subsequently, we illustrate the usability of PROGENy and DoRothEA by recovering pathway/TF-disease associations from newly generated disease sets. Additionally, we provide pathway and TF activity scores for a large collection of human and mouse perturbation and disease experiments (2374). We believe that this resource, available for interactive exploration and download (https://saezlab.shinyapps.io/footprint_scores/), can have broad applications including the study of diseases and therapeutics.

Authors: Christian H. Holland, Bence Szalai, Julio Saez-Rodriguez

Date Published: 1st Sep 2019

Publication Type: Not specified

Abstract (Expand)

The prediction of transcription factor (TF) activities from the gene expression of their targets (i.e., TF regulon) is becoming a widely used approach to characterize the functional status of transcriptional regulatory circuits. Several strategies and data sets have been proposed to link the target genes likely regulated by a TF, each one providing a different level of evidence. The most established ones are (1) manually curated repositories, (2) interactions derived from ChIP-seq binding data, (3) in silico prediction of TF binding on gene promoters, and (4) reverse-engineered regulons from large gene expression data sets. However, it is not known how these different sources of regulons affect the TF activity estimations and, thereby, downstream analysis and interpretation. Here we compared the accuracy and biases of these strategies to define human TF regulons by means of their ability to predict changes in TF activities in three reference benchmark data sets. We assembled a collection of TF–target interactions for 1541 human TFs and evaluated how different molecular and regulatory properties of the TFs, such as the DNA-binding domain, specificities, or mode of interaction with the chromatin, affect the predictions of TF activity. We assessed their coverage and found little overlap on the regulons derived from each strategy and better performance by literature-curated information followed by ChIP-seq data. We provide an integrated resource of all TF–target interactions derived through these strategies, with confidence scores, as a resource for enhanced prediction of TF activities.

Authors: Luz Garcia-Alonso, Christian H. Holland, Mahmoud M. Ibrahim, Denes Turei, Julio Saez-Rodriguez

Date Published: 1st Aug 2019

Publication Type: Not specified

Abstract (Expand)

Two polymorphisms in the promoter region of macrophage migration inhibitory factor (MIF) - rs755622 and rs5844572 - exhibit prognostic relevance in inflammatory diseases. The aim of this study was to investigate a correlation between these MIF promoter polymorphisms and the severity of hepatitis C virus (HCV)-induced liver fibrosis. Our analysis included two independent patient cohorts with HCV-induced liver fibrosis (504 and 443 patients, respectively). The genotype of the single nucleotide polymorphism (SNP) -173 G/C and the repeat number of the microsatellite polymorphism -794 CATT5-8 were determined in DNA samples and correlated with fibrosis severity. In the first cohort, homozygous carriers of the C allele in the rs755622 had lower fibrosis stages compared to heterozygous carriers or wild types (1.25 vs. 2.0 vs. 2.0; p = 0.03). Additionally, >/=7 microsatellite repeats were associated with lower fibrosis stages (<F2) (p = 0.04). Comparable tendencies were observed in the second independent cohort, where fibrosis was assessed using transient elastography. However, once cirrhosis had been established, the C/C genotype and higher microsatellite repeats correlated with impaired liver function and a higher prevalence of hepatocellular carcinoma. Our study demonstrates that specific MIF polymorphisms are associated with disease severity and complications of HCV-induced fibrosis in a stage- and context-dependent manner.

Authors: T. H. Wirtz, P. Fischer, C. Backhaus, I. Bergmann, E. F. Brandt, D. Heinrichs, M. T. Koenen, K. M. Schneider, T. Eggermann, I. Kurth, C. Stoppe, J. Bernhagen, T. Bruns, J. Fischer, T. Berg, C. Trautwein, M. L. Berres

Date Published: 31st Jul 2019

Publication Type: Journal

Abstract (Expand)

BACKGROUND & AIMS: Activation of transforming growth factor beta (TGFB) promotes liver fibrosis by activating hepatic stellate cells (HSCs), but the mechanism of TGFB activation are not clear. We investigated the role of extracellular matrix protein 1 (ECM1), which interacts with extracellular and structural proteins, in TGFB activation in livers of mice. METHODS: We performed studies with e C57BL/6J mice (controls), ECM1-knockout (ECM1-KO) mice, and mice with hepatocyte-specific knockout of EMC1 (ECM1Deltahep). ECM1 or soluble TGFB receptor 2 (TGFBR2) were expressed in livers of mice following injection of an adeno-associated virus vector. Liver fibrosis was induced by carbon tetrachloride (CCl4) administration. Livers were collected from mice and analyzed by histology, immunohistochemistry, in situ hybridization, and immunofluorescence analyses. Hepatocytes and HSCs were isolated from livers of mice and incubated with ECM1; production of cytokines and activation of reporter genes were quantified. Liver tissues from patients with viral or alcohol-induced hepatitis (with different stages of fibrosis) and individuals with healthy liver were analyzed by immunohistochemistry and in situ hybridization. RESULTS: ECM1-KO mice spontaneously developed liver fibrosis and died by 2 months of age without significant hepatocyte damage or inflammation. In liver tissues of mice, we found that ECM1 stabilized extracellular matrix-deposited TGFB in its inactive form by interacting with alphav integrins to prevent activation of HSCs. In liver tissues from patients and in mice with CCl4-induced liver fibrosis, we found an inverse correlation between level of ECM1 and severity of fibrosis. CCl4-induced liver fibrosis was accelerated in ECM1Deltahep mice compared with control mice. Hepatocytes produced the highest levels of ECM1 in livers of mice. Ectopic expression of ECM1 or soluble TGFBR2 in liver prevented fibrogenesis in ECM1-KO mice and prolonged their survival. Ectopic expression of ECM1 in liver also reduced the severity of CCl4-induced fibrosis in mice. CONCLUSIONS: ECM1, produced by hepatocytes, inhibits activation of TGFB and its activation of HSCs to prevent fibrogenesis in mouse liver. Strategies to increase levels of ECM1 in liver might be developed for treatment of fibrosis.

Authors: W. Fan, T. Liu, W. Chen, S. Hammad, T. Longerich, Y. Fu, N. Li, Y. He, C. Liu, Y. Zhang, Q. Lian, X. Zhao, C. Yan, L. Li, C. Yi, Z. Ling, L. Ma, X. Zhao, H. Xu, P. Wang, M. Cong, H. You, Z. Liu, Y. Wang, J. Chen, D. Li, L. Hui, S. Dooley, J. Hou, J. Jia, B. Sun

Date Published: 27th Jul 2019

Publication Type: Not specified

Abstract (Expand)

BACKGROUND & AIMS: Alpha-1 antitrypsin deficiency (AATD) is among the most common genetic disorders. Severe AATD is caused by a homozygous mutation in the SERPINA1 gene that encodes the Glu342Lys substitution (called the Pi*Z mutation, Pi*ZZ genotype). Pi*ZZ carriers may develop lung and liver diseases. Mutation-associated lung disorders have been well studied, but less is known about the effects in liver. We assessed the liver disease burden and associated features in adults with this form of AATD. METHODS: We collected data from 554 Pi*ZZ adults (403 in an exploratory cohort, 151 in a confirmatory cohort), in 9 European countries, with AATD who were homozygous for the Pi*Z mutation, and 234 adults without the Pi*Z mutation (controls), all without pre-existing liver disease. We collected data on demographic parameters, comorbidities, lung- and liver-related health, and blood samples for laboratory analysis. Liver fibrosis was assessed non-invasively via the serum tests Aspartate Aminotransferase to Platelet Ratio Index and HepaScore and via transient elastography. Liver steatosis was determined via transient elastography-based controlled attenuation parameter. We performed histologic analyses of livers from transgenic mice that overexpress the AATD-associated Pi*Z variant. RESULTS: Serum levels of liver enzymes were significantly higher in Pi*ZZ carriers vs controls. Based on non-invasive tests for liver fibrosis, significant fibrosis was suspected in 20%-36% of Pi*ZZ carriers, whereas signs of advanced fibrosis were 9- to 20-fold more common in Pi*ZZ carriers compared to non-carriers. Male sex; age older than 50 years; increased levels of alanine aminotransferase, aspartate aminotransferase, or gamma-glutamyl transferase; and low numbers of platelets were associated with higher liver fibrosis burden. We did not find evidence for a relationship between lung function and liver fibrosis. Controlled attenuation parameter >/=280 dB/m, suggesting severe steatosis, was detected in 39% of Pi*ZZ carriers vs 31% of controls. Carriers of Pi*ZZ had lower serum concentrations of triglyceride and low- and very-low-density lipoprotein cholesterol than controls, suggesting impaired hepatic secretion of lipid. Livers from Pi*Z-overexpressing mice had steatosis and down-regulation of genes involved in lipid secretion. CONCLUSIONS: In studies of AATD adults with the Pi*ZZ mutation, and of Pi*Z-overexpressing mice, we found evidence of liver steatosis and impaired lipid secretion. We identified factors associated with significant liver fibrosis in patients, which could facilitate hepatologic assessment and counseling of individuals who carry the Pi*ZZ mutation. ClinicalTrials.gov Number NCT02929940.

Authors: K. Hamesch, M. Mandorfer, V. M. Pereira, L. S. Moeller, M. Pons, G. E. Dolman, M. C. Reichert, C. V. Schneider, V. Woditsch, J. Voss, C. Lindhauer, M. Fromme, I. Spivak, N. Guldiken, B. Zhou, A. Arslanow, B. Schaefer, H. Zoller, E. Aigner, T. Reiberger, M. Wetzel, B. Siegmund, C. Simoes, R. Gaspar, L. Maia, D. Costa, M. Bento-Miranda, J. van Helden, E. Yagmur, D. Bzdok, J. Stolk, W. Gleiber, V. Knipel, W. Windisch, R. Mahadeva, R. Bals, R. Koczulla, M. Barrecheguren, M. Miravitlles, S. Janciauskiene, F. Stickel, F. Lammert, R. Liberal, J. Genesca, W. J. Griffiths, M. Trauner, A. Krag, C. Trautwein, P. Strnad

Date Published: 24th May 2019

Publication Type: Not specified

Abstract (Expand)

Repeated administration of hepatotoxicants is usually accompanied by liver fibrosis. However, the difference in response as a result of repeated exposures of acetaminophen (APAP) compared to a single dose is not well-studied. Therefore, in the current study, the liver response after a second dose of APAP was investigated. Adult fasted Balb/C mice were exposed to two toxic doses of 300 mg/kg APAP, which were administered 72 h apart from each other. Subsequently, blood and liver from the treated mice were collected 24 h and 72 h after both APAP admin-istrations. Liver transaminase, i.e. alanine amino transferase (ALT) and aspartate amino transferase (AST) levels revealed that the fulminant liver damage was reduced after the second APAP administration compared to that observed at the same time point after the first treatment. These results correlated with the necrotic areas as indicated by histological analyses. Surprisingly, Picro Sirius Red (PSR) staining showed that the accumulation of extracel-lular matrix after the second dose coincides with the upregulation of some fibrogenic signatures, e.g., alpha smooth muscle actin. Non-targeted liver tissue metabolic profiling indicates that most alterations occur 24 h after the first dose of APAP. However, the levels of most metabolites recover to basal values over time. This organ adaptation process is also confirmed by the upregulation of antioxidative systems like e.g. superoxide dismutase and catalase. From the results, it can be concluded that there is a different response of the liver to APAP toxic doses, if the liver has already been exposed to APAP. A necroinflammatory process followed by a liver regeneration was observed after the first APAP exposure. However, fibrogenesis through the accumulation of extracellular matrix is observed after a second challenge. Therefore, further studies are required to mechanistically understand the so called “liver memory”

Author: Mohammad AlWahsh, Amnah Othman, Lama Hamadneh, Ahmad Telfah, Jörg Lambert, Suhair Hikmat, Amin Alassi, Fatma El Zahraa Mohamed, Roland Hergenröder, Tariq Al-Qirim, Steven Dooley, Seddik Hammad

Date Published: 6th Feb 2019

Publication Type: Not specified

Abstract

Not specified

Authors: Ersin Karatayli, Rabea A. Hall, Susanne N. Weber, Steven Dooley, Frank Lammert

Date Published: 1st Feb 2019

Publication Type: Not specified

Abstract (Expand)

Data standards support the reliable exchange of information, the interoperability of tools, and the reproducibility of scientific results. In systems biology standards are agreed ways of structuring, describing, and associating models and data, as well as their respective parts, graphical visualization, and information about applied experimental or computational methods. Such standards also assist with describing how constituent parts interact together, or are linked, and how they are embedded in their environmental and experimental context. Here the focus will be on standards for formatting models and their content, and on metadata checklists and ontologies that support modeling.

Author: Martin Golebiewski

Date Published: 2019

Publication Type: InBook

Abstract

Not specified

Authors: Amruta Damle-Vartak, Brigitte Begher-Tibbe, Georgia Gunther, Fabian Geisler, Nachiket Vartak, Jan G. Hengstler

Date Published: 2019

Publication Type: Book

Abstract

Not specified

Authors: Matthias Reichert, Frank Lammert

Date Published: 24th Oct 2018

Publication Type: Not specified

Abstract (Expand)

BACKGROUND: Although metabolism is profoundly altered in human liver cancer, the extent to which experimental models, e.g. cell lines, mimic those alterations is unresolved. Here, we aimed to determine the resemblance of hepatocellular carcinoma (HCC) cell lines to human liver tumours, specifically in the expression of deregulated metabolic targets in clinical tissue samples. METHODS: We compared the overall gene expression profile of poorly-differentiated (HLE, HLF, SNU-449) to well-differentiated (HUH7, HEPG2, HEP3B) HCC cell lines in three publicly available microarray datasets. Three thousand and eighty-five differentially expressed genes in >/=2 datasets (P < 0.05) were used for pathway enrichment and gene ontology (GO) analyses. Further, we compared the topmost gene expression, pathways, and GO from poorly differentiated cell lines to the pattern from four human HCC datasets (623 tumour tissues). In well- versus poorly differentiated cell lines, and in representative models HLE and HUH7 cells, we specifically assessed the expression pattern of 634 consistently deregulated metabolic genes in human HCC. These data were complemented by quantitative PCR, proteomics, metabolomics and assessment of response to thirteen metabolism-targeting compounds in HLE versus HUH7 cells. RESULTS: We found that poorly-differentiated HCC cells display upregulated MAPK/RAS/NFkB signaling, focal adhesion, and downregulated complement/coagulation cascade, PPAR-signaling, among pathway alterations seen in clinical tumour datasets. In HLE cells, 148 downregulated metabolic genes in liver tumours also showed low gene/protein expression - notably in fatty acid beta-oxidation (e.g. ACAA1/2, ACADSB, HADH), urea cycle (e.g. CPS1, ARG1, ASL), molecule transport (e.g. SLC2A2, SLC7A1, SLC25A15/20), and amino acid metabolism (e.g. PHGDH, PSAT1, GOT1, GLUD1). In contrast, HUH7 cells showed a higher expression of 98 metabolic targets upregulated in tumours (e.g. HK2, PKM, PSPH, GLUL, ASNS, and fatty acid synthesis enzymes ACLY, FASN). Metabolomics revealed that the genomic portrait of HLE cells co-exist with profound reliance on glutamine to fuel tricarboxylic acid cycle, whereas HUH7 cells use both glucose and glutamine. Targeting glutamine pathway selectively suppressed the proliferation of HLE cells. CONCLUSIONS: We report a yet unappreciated distinct expression pattern of clinically-relevant metabolic genes in HCC cell lines, which could enable the identification and therapeutic targeting of metabolic vulnerabilities at various liver cancer stages.

Authors: Z. C. Nwosu, N. Battello, M. Rothley, W. Pioronska, B. Sitek, M. P. Ebert, U. Hofmann, J. Sleeman, S. Wolfl, C. Meyer, D. A. Megger, S. Dooley

Date Published: 5th Sep 2018

Publication Type: Not specified

Abstract (Expand)

MicroRNA (miRNA)-mediated gene regulation contributes to liver pathophysiology, including hepatic stellate cell (HSC) activation and fibrosis progression. Here, we investigated the role of miR-942 in human liver fibrosis. The expression of miR-942, HSC activation markers, transforming growth factor-beta pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI), as well as collagen deposition, were investigated in 100 liver specimens from patients with varying degree of hepatitis B virus (HBV)-related fibrosis. Human primary HSCs and the immortalized cell line (LX2 cells) were used for functional studies. We found that miR-942 expression was upregulated in activated HSCs and correlated inversely with BAMBI expression in liver fibrosis progression. Transforming growth factor beta (TGF-beta) and lipopolyssacharide (LPS), two major drivers of liver fibrosis and inflammation, induce miR-942 expression in HSCs via Smad2/3 respective NF-kappaB/p50 binding to the miR-942 promoter. Mechanistically, the induced miR-942 degrades BAMBI mRNA in HSCs, thereby sensitizing the cells for fibrogenic TGF-beta signaling and also partly mediates LPS-induced proinflammatory HSC fate. In conclusion, the TGF-beta and LPS-induced miR-942 mediates HSC activation through downregulation of BAMBI in human liver fibrosis. Our study provides new insights on the molecular mechanism of HSC activation and fibrosis.

Authors: L. Tao, D. Xue, D. Shen, W. Ma, J. Zhang, X. Wang, W. Zhang, L. Wu, K. Pan, Y. Yang, Z. C. Nwosu, S. Dooley, E. Seki, C. Liu

Date Published: 12th Aug 2018

Publication Type: Not specified

Abstract (Expand)

Upon liver intoxication with malnutrition or high-fat diet feeding, fibrinogen is synthesized by hepatocytes and secreted into the blood in human and mouse. Its primary function is to occlude blood vessels upon damage and thereby stop excessive bleeding. High fibrinogen levels may contribute to the development of pathological thrombosis, which is one mechanism linking fatty liver disease with cardiovascular disease. Our previous results present ERRgamma as key regulator of hepatocytic fibrinogen gene expression in human. In a therapeutic approach, we now tested ERRgamma inverse agonist GSK5182 as regulator of fibrinogen levels in mouse hyperfibrinogenemia caused by diet-induced obesity and in mouse hepatocytes. ACEA, a CB1R agonist, up-regulated transcription of mouse fibrinogen via induction of ERRgamma, whereas knockdown of ERRgamma attenuated the effect of ACEA (10 microM) on fibrinogen expression in AML12 mouse hepatocytes. Deletion analyses of the mouse fibrinogen gamma (FGG) gene promoter and ChIP assays revealed binding sites for ERRgamma on the mouse FGG promoter. ACEA or adenovirus ERRgamma injection induced FGA, FGB and FGG mRNA and protein expression in mouse liver, while ERRgamma knockdown with Ad-shERRgamma attenuated ACEA-mediated induction of fibrinogen gene expression. Moreover, mice maintained on a high-fat diet (HFD) expressed higher levels of fibrinogen, whereas cannabinoid receptor type 1 (CB1R)-KO mice fed an HFD had nearly normal fibrinogen levels. Finally, GSK5182 (40 mg/kg) strongly inhibits the ACEA (10 mg/kg) or HFD-mediated induction of fibrinogen level in mice. Taken together, targeting ERRgamma with its inverse agonist GSK5182 represents a promising therapeutic strategy for ameliorating hyperfibrinogenemia.

Authors: Y. Zhang, D. K. Kim, Y. S. Jung, Y. H. Kim, Y. S. Lee, J. Kim, W. I. Jeong, I. K. Lee, S. J. Cho, S. Dooley, C. H. Lee, H. S. Choi

Date Published: 19th Jul 2018

Publication Type: Not specified

Abstract (Expand)

Tamoxifen (TAM) is commonly used for cell type specific Cre recombinase-induced gene inactivation and in cell fate tracing studies. Inducing a gene knockout by TAM and using non-TAM exposed mice as controls lead to a situation where differences are interpreted as consequences of the gene knockout but in reality result from TAM-induced changes in hepatic metabolism. The degree to which TAM may compromise the interpretation of animal experiments with inducible gene expression still has to be elucidated. Here, we report that TAM strongly attenuates CCl4-induced hepatotoxicity in male C57Bl/6N mice, even after a 10 days TAM exposure-free period. TAM decreased (p < 0.0001) the necrosis index and the level of aspartate- and alanine transaminases in CCl4-treated compared to vehicle-exposed mice. TAM pretreatment also led to the downregulation of CYP2E1 (p = 0.0045) in mouse liver tissue, and lowered its activity in CYP2E1 expressing HepG2 cell line. Furthermore, TAM increased the level of the antioxidant ascorbate, catalase, SOD2, and methionine, as well as phase II metabolizing enzymes GSTM1 and UGT1A1 in CCl4-treated livers. Finally, we found that TAM increased the presence of resident macrophages and recruitment of immune cells in necrotic areas of the livers as indicated by F4/80 and CD45 staining. In conclusion, we reveal that TAM increases liver resistance to CCl4-induced toxicity. This finding is of high relevance for studies using the tamoxifen-inducible expression system particularly if this system is used in combination with hepatotoxic compounds such as CCl4.

Authors: Seddik Hammad, Amnah Othman, Christoph Meyer, Ahmad Telfah, Joerg Lambert, Bedair Dewidar, Julia Werle, Zeribe Chike Nwosu, Abdo Mahli, Christof Dormann, Yan Gao, Kerry Gould, Mei Han, Xiaodong Yuan, Mikheil Gogiashvili, Roland Hergenröder, Claus Hellerbrand, Maria Thomas, Matthias Philip Ebert, Salah Amasheh, Jan G. Hengstler, Steven Dooley

Date Published: 4th Jul 2018

Publication Type: Not specified

Abstract (Expand)

Transforming growth factor (TGF)-β stimulates extracellular matrix (ECM) deposition during development of liver fibrosis and cirrhosis, the most important risk factor for the onset of hepatocellular carcinoma. In liver cancer, TGF-β is responsible for a more aggressive and invasive phenotype, orchestrating remodeling of the tumor microenvironment and triggering epithelial-mesenchymal transition of cancer cells. This is the scientific rationale for targeting the TGF-β pathway via a small molecule, galunisertib (intracellular inhibitor of ALK5) in clinical trials to treat liver cancer patients at an advanced disease stage. In this study, the hypothesis that galunisertib modifies the tissue microenvironment via inhibition of the TGF-β pathway is tested in an experimental preclinical model. At the age of 6 months, Abcb4ko mice-a well-established model for chronic liver disease development and progression-are treated twice daily with galunisertib (150 mg/kg) via oral gavage for 14 consecutive days. Two days after the last treatment, blood plasma and livers are harvested for further assessment, including fibrosis scoring and ECM components. The reduction of Smad2 phosphorylation in both parenchymal and non-parenchymal liver cells following galunisertib administration confirms the treatment effectiveness. Damage-related galunisertib does not change cell proliferation, macrophage numbers and leucocyte recruitment. Furthermore, no clear impact on the amount of fibrosis is evident, as documented by PicroSirius red and Gomori-trichome scoring. On the other hand, several fibrogenic genes, e.g., collagens (Col1α1 and Col1α2), Tgf-β1 and Timp1, mRNA levels are significantly downregulated by galunisertib administration when compared to controls. Most interestingly, ECM/stromal components, fibronectin and laminin-332, as well as the carcinogenic β-catenin pathway, are remarkably reduced by galunisertib-treated Abcb5ko mice. In conclusion, TGF-β inhibition by galunisertib interferes, to some extent, with chronic liver progression, not by reducing the stage of liver fibrosis as measured by different scoring systems, but rather by modulating the biochemical composition of the deposited ECM, likely affecting the fate of non-parenchymal cells.

Authors: Seddik Hammad, Elisabetta Cavalcanti, Julia Werle, Maria Lucia Caruso, Anne Dropmann, Antonia Ignazzi, Matthias Philip Ebert, Steven Dooley, Gianluigi Giannelli

Date Published: 28th May 2018

Publication Type: Not specified

Abstract (Expand)

Standards are essential to the advancement of Systems and Synthetic Biology. COMBINE provides a formal body and a centralised platform to help develop and disseminate relevant standards and related resources. The regular special issue of the Journal of Integrative Bioinformatics aims to support the exchange, distribution and archiving of these standards by providing unified, easily citable access. This paper provides an overview of existing COMBINE standards and presents developments of the last year.

Authors: F. Schreiber, G. D. Bader, P. Gleeson, M. Golebiewski, M. Hucka, S. M. Keating, N. L. Novere, C. Myers, D. Nickerson, B. Sommer, D. Waltemath

Date Published: 30th Mar 2018

Publication Type: Not specified

Abstract (Expand)

BACKGROUND/AIMS: Common genetic variations in vitamin D metabolism are associated with liver stiffness. Whether these genes are implicated in hepatic steatosis remains unclear. Here we aimed to analyse the association of common vitamin D pathway gene variants with liver steatosis. METHODS: Liver steatosis was assessed non-invasively in 241 patients with chronic liver conditions by controlled attenuation parameter (CAP). The following polymorphisms were genotyped using TaqMan assays: group-specific component (GC) rs7041, 7-dehydrocholesterol reductase (DHCR7) rs12785878, cytochrome P450 2R1 (CYP2R1) rs10741657, -vitamin D receptor (VDR) rs7974353. Chemiluminescence immunoassay determined serum 25-hydroxyvitamin D (25(OH) D) concentrations. RESULTS: Vitamin D deficiency (defined by 25(OH)D concentrations <20 ng/mL) occurred in 66% of patients. Median CAP was 296 (100-400) dB/m. Patients with advanced steatosis (CAP >/=280 dB/m) had significantly (p = 0.033) lower 25(OH)D levels as compared to patients with CAP <280 dB/m. Moreover, the rare allele [T] in GC rs7041 was significantly (p = 0.018) associated with higher 25(OH)D levels in patients with CAP <280 dB/m. However, GC, DHCR7, CYP2R1, and VDR polymorphisms were not related to liver steatosis and obesity traits. CONCLUSIONS: Higher CAP values are associated with low serum 25(OH)D concentrations but not with common vitamin D pathway gene variants.

Authors: M. Jamka, A. Arslanow, A. Bohner, M. Krawczyk, S. N. Weber, F. Grunhage, F. Lammert, C. S. Stokes

Date Published: 8th Mar 2018

Publication Type: Not specified

Abstract

Not specified

Authors: Dilay Lai, Feng Teng, Seddik Hammad, Julia Werle, Thorsten Maas, Andreas Teufel, Martina U. Muckenthaler, Steven Dooley, Maja Vujić Spasić

Date Published: 1st Feb 2018

Publication Type: Not specified

Abstract (Expand)

Life science researchers use computational models to articulate and test hypotheses about the behavior of biological systems. Semantic annotation is a critical component for enhancing the interoperability and reusability of such models as well as for the integration of the data needed for model parameterization and validation. Encoded as machine-readable links to knowledge resource terms, semantic annotations describe the computational or biological meaning of what models and data represent. These annotations help researchers find and repurpose models, accelerate model composition and enable knowledge integration across model repositories and experimental data stores. However, realizing the potential benefits of semantic annotation requires the development of model annotation standards that adhere to a community-based annotation protocol. Without such standards, tool developers must account for a variety of annotation formats and approaches, a situation that can become prohibitively cumbersome and which can defeat the purpose of linking model elements to controlled knowledge resource terms. Currently, no consensus protocol for semantic annotation exists among the larger biological modeling community. Here, we report on the landscape of current annotation practices among the COmputational Modeling in BIology NEtwork community and provide a set of recommendations for building a consensus approach to semantic annotation.

Authors: M. L. Neal, M. Konig, D. Nickerson, G. Misirli, R. Kalbasi, A. Drager, K. Atalag, V. Chelliah, M. T. Cooling, D. L. Cook, S. Crook, M. de Alba, S. H. Friedman, A. Garny, J. H. Gennari, P. Gleeson, M. Golebiewski, M. Hucka, N. Juty, C. Myers, B. G. Olivier, H. M. Sauro, M. Scharm, J. L. Snoep, V. Toure, A. Wipat, O. Wolkenhauer, D. Waltemath

Date Published: 22nd Jan 2018

Publication Type: Not specified

Abstract (Expand)

Alcohol abuse is a global health problem causing a substantial fraction of chronic liver diseases. Abundant TGF-beta-a potent pro-fibrogenic cytokine-leads to disease progression. Our aim was to elucidate the crosstalk of TGF-beta and alcohol on hepatocytes. Primary murine hepatocytes were challenged with ethanol and TGF-beta and cell fate was determined. Fluidigm RNA analyses revealed transcriptional effects that regulate survival and apoptosis. Mechanistic insights were derived from enzyme/pathway inhibition experiments and modulation of oxidative stress levels. To substantiate findings, animal model specimens and human liver tissue cultures were investigated. RESULTS: On its own, ethanol had no effect on hepatocyte apoptosis, whereas TGF-beta increased cell death. Combined treatment led to massive hepatocyte apoptosis, which could also be recapitulated in human HCC liver tissue treated ex vivo. Alcohol boosted the TGF-beta pro-apoptotic gene signature. The underlying mechanism of pathway crosstalk involves SMAD and non-SMAD/AKT signaling. Blunting CYP2E1 and ADH activities did not prevent this effect, implying that it was not a consequence of alcohol metabolism. In line with this, the ethanol metabolite acetaldehyde did not mimic the effect and glutathione supplementation did not prevent the super-induction of cell death. In contrast, blocking GSK-3beta activity, a downstream mediator of AKT signaling, rescued the strong apoptotic response triggered by ethanol and TGF-beta. This study provides novel information on the crosstalk between ethanol and TGF-beta. We give evidence that ethanol directly leads to a boost of TGF-beta's pro-apoptotic function in hepatocytes, which may have implications for patients with chronic alcoholic liver disease.

Authors: H. Gaitantzi, C. Meyer, P. Rakoczy, M. Thomas, K. Wahl, F. Wandrer, H. Bantel, H. Alborzinia, S. Wolfl, S. Ehnert, A. Nussler, I. Bergheim, L. Ciuclan, M. Ebert, K. Breitkopf-Heinlein, S. Dooley

Date Published: 21st Jan 2018

Publication Type: Not specified

Abstract (Expand)

Standards for data exchange are critical to the development of any field. They enable researchers and practitioners to transport information reliably, to apply a variety of tools to their problems, and to reproduce scientific results. Over the past two decades, a range of standards have been developed to facilitate the exchange and reuse of information in the domain of representation and modeling of biological systems. These standards are complementary, so the interactions between their developers increased over time. By the end of the last decade, the community of researchers decided that more interoperability is required between the standards, and that common development is needed to make better use of effort, time, and money devoted to this activity. The COmputational MOdeling in Biology NEtwork (COMBINE) was created to enable the sharing of resources, tools, and other infrastructure. This paper provides a brief history of this endeavor and the challenges that remain.

Authors: Chris J. Myers, Gary Bader, Padraig Gleeson, Martin Golebiewski, Michael Hucka, Nicolas Le Novere, David P. Nickerson, Falk Schreiber, Dagmar Waltemath

Date Published: 1st Dec 2017

Publication Type: Not specified

Abstract (Expand)

The metabolization and excretion of drugs in the liver are spatially heterogeneous processes. This is due to the spatial variability of physiological processes at different length scales of biological organization in healthy individuals, while many liver diseases further contribute to the heterogeneity. Classical, well-stirred pharmacokinetic models do not represent this heterogeneity, and various modeling approaches capable of representing heterogeneity have been developed recently. These approaches range from mechanistic and physio-geometrically realistic models focusing on specific spatial scales, via continuum models using homogenized physiological and metabolic properties, to integrative multiscale models. Such models could become essential research tools for simulations involving drugs with notable first-pass effects, fast-acting drugs or tracers, and diseased livers.

Authors: Lars Ole Schwen, Lars Kuepfer, Tobias Preusser

Date Published: 29th Nov 2017

Publication Type: Not specified

Abstract

Not specified

Authors: Joaquim Moreno-Càceres, Daniel Caballero-Díaz, Zeribe Chike Nwosu, Christoph Meyer, Judit López-Luque, Andrea Malfettone, Raquel Lastra, Teresa Serrano, Emilio Ramos, Steven Dooley, Isabel Fabregat

Date Published: 12th Oct 2017

Publication Type: Not specified

Abstract

Not specified

Authors: Zeribe Chike Nwosu, Dominik Andre Megger, Seddik Hammad, Barbara Sitek, Stephanie Roessler, Matthias Philip Ebert, Christoph Meyer, Steven Dooley

Date Published: 1st Sep 2017

Publication Type: Not specified

Abstract (Expand)

Carbon tetrachloride-induced liver injury is a thoroughly studied model for regeneration and fibrosis in rodents. Nevertheless, its pattern of liver fibrosis is frequently misinterpreted as portal type. To clarify this, we show that collagen type IV+ "streets" and alpha-SMA+ cells accumulate pericentrally and extend to neighbouring central areas of the liver lobule, forming a 'pseudolobule'. Blood vessels in the center of such pseudolobules are portal veins as indicated by the presence of bile duct cells (CK19+) and the absence of pericentral hepatocytes (glutamine synthetase+). It is critical to correctly describe this pattern of fibrosis, particulary for metabolic zonation studies.

Authors: S. Hammad, A. Braeuning, C. Meyer, F. E. Z. A. Mohamed, J. G. Hengstler, S. Dooley

Date Published: 22nd Aug 2017

Publication Type: Not specified

Abstract (Expand)

Familial cholangiopathies are rare but potentially severe diseases. Their spectrum ranges from fairly benign conditions as, for example, benign recurrent intrahepatic cholestasis to low-phospholipid associated cholelithiasis and progressive familial intrahepatic cholestasis (PFIC). Many cholangiopathies such as primary biliary cholangitis (PBC) or primary sclerosing cholangitis (PSC) affect first the bile ducts ("ascending pathophysiology") but others, such as PFIC, start upstream in hepatocytes and cause progressive damage "descending" down the biliary tree and leading to end-stage liver disease. In recent years our understanding of cholestatic diseases has improved, since we have been able to pinpoint numerous disease-causing mutations that cause familial cholangiopathies. Accordingly, six PFIC subtypes (PFIC type 1-6) have now been defined. Given the availability of genotyping resources, these findings can be introduced in the diagnostic work-up of patients with peculiar cholestasis. In addition, functional studies have defined the pathophysiological consequences of some of the detected variants. Furthermore, ABCB4 variants do not only cause PFIC type 3 but confer an increased risk for chronic liver disease in general. In the near future these findings will serve to develop new therapeutic strategies for patients with liver diseases. Here we present the latest data on the genetic background of familial cholangiopathies and discuss their application in clinical practice for the differential diagnosis of cholestasis of unknown aetiology. As look in the future we present "system genetics" as a novel experimental tool for the study of cholangiopathies and disease-modifying genes. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.

Authors: M. C. Reichert, R. A. Hall, M. Krawczyk, F. Lammert

Date Published: 2nd Aug 2017

Publication Type: Journal

Abstract

Not specified

Authors: Yaochen Zhang, Don-Kyu Kim, Yan Lu, Yoon Seok Jung, Ji-min Lee, Young-Hoon Kim, Yong Soo Lee, Jina Kim, Bedair Dewidar, Won-IL Jeong, In-Kyu Lee, Sung Jin Cho, Steven Dooley, Chul-Ho Lee, Xiaoying Li, Hueng-Sik Choi

Date Published: 27th Jul 2017

Publication Type: Not specified

Abstract (Expand)

Organ regeneration is a very complex process that includes not only the reconstruction of organ mass but also the reorganisation of homeostatic capabilities. This especially applies for the liver, which performs a variety of metabolic functions. In the last decade, morphogenic pathways such as the Wnt/β-Catenin and Hedgehog signalling pathways have been revealed to orchestrate liver regeneration as well as metabolism. Mathematical models have been successfully applied to liver regeneration, but these have not integrated the Hedgehog signalling pathway. In this review it is tried to compile features of Hh signalling in liver regeneration which can be integrated into liver regeneration modeling.

Author: Madlen Matz-Soja

Date Published: 1st Jul 2017

Publication Type: Not specified

Abstract (Expand)

The Hedgehog signaling pathway is known to be involved in embryogenesis, tissue remodeling, and carcinogenesis. Because of its involvement in carcinogenesis, it seems an interesting target for cancer therapy. Indeed, Sonidegib, an approved inhibitor of the Hedgehog receptor Smoothened (Smo), is highly active against diverse carcinomas, but its use is also reported to be associated with several systemic side effects. Our former work in adult mice demonstrated hepatic Hedgehog signaling to play a key role in the insulin-like growth factor axis and lipid metabolism. The current work using mice with an embryonic and hepatocyte-specific Smo deletion describes an adverse impact of the hepatic Hedgehog pathway on female fertility. In female SAC-KO mice, we detected androgenization characterized by a 3.3-fold increase in testosterone at 12 weeks of age based on an impressive induction of steroidogenic gene expression in hepatocytes, but not in the classic steroidogenic organs (ovary and adrenal gland). Along with the elevated level of testosterone, the female SAC-KO mice showed infertility characterized by juvenile reproductive organs and acyclicity. The endocrine and reproductive alterations resembled polycystic ovarian syndrome and could be confirmed in a second mouse model with conditional deletion of Smo at 8 weeks of age after an extended period of 8 months. We conclude that the down-regulation of hepatic Hedgehog signaling leads to an impaired hormonal balance by the induction of steroidogenesis in the liver. These effects of Hedgehog signaling inhibition should be considered when using Hedgehog inhibitors as anti-cancer drugs.

Authors: Christiane Rennert, Franziska Eplinius, Ute Hofmann, Janina Johänning, Franziska Rolfs, Wolfgang Schmidt-Heck, Reinhardt Guthke, Rolf Gebhardt, Albert M. Ricken, Madlen Matz-Soja

Date Published: 30th May 2017

Publication Type: Not specified

Abstract

Not specified

Authors: Rodrigo Rojas-Moraleda, Wei Xiong, Niels Halama, Katja Breitkopf-Heinlein, Steven Dooley, Luis Salinas, Dieter W. Heermann, Nektarios A. Valous

Date Published: 1st May 2017

Publication Type: Not specified

Abstract

Not specified

Authors: P. GONZÁLEZ-AVALOS, M. MÜRNSEER, J. DEEG, A. BACHMANN, J. SPATZ, S. DOOLEY, R. EILS, E. GLADILIN

Date Published: 1st May 2017

Publication Type: Not specified

Abstract

Not specified

Authors: Wolfgang Schmidt-Heck, Eva C. Wönne, Thomas Hiller, Uwe Menzel, Dirk Koczan, Georg Damm, Daniel Seehofer, Fanny Knöspel, Nora Freyer, Reinhard Guthke, Steven Dooley, Katrin Zeilinger

Date Published: 1st May 2017

Publication Type: Not specified

Abstract

Not specified

Authors: Katharina Beuke, Frank A. Schildberg, Federico Pinna, Ute Albrecht, Roman Liebe, Michaela Bissinger, Peter Schirmacher, Steven Dooley, Johannes G. Bode, Percy A. Knolle, Ursula Kummer, Kai Breuhahn, Sven Sahle

Date Published: 1st Mar 2017

Publication Type: Not specified

Abstract

Not specified

Authors: T Feng, J Dzieran, X Yuan, A Dropmann, T Maass, A Teufel, S Marhenke, T Gaiser, F Rückert, I Kleiter, S Kanzler, M P Ebert, A Vogel, P ten Dijke, S Dooley, N M Meindl-Beinker

Date Published: 2017

Publication Type: Not specified

Abstract

Not specified

Authors: Simeng Chen, Teng Feng, Maja Vujić Spasić, Sandro Altamura, Katja Breitkopf-Heinlein, Jutta Altenöder, Thomas S. Weiss, Steven Dooley, Martina U. Muckenthaler

Date Published: 17th Jun 2016

Publication Type: Not specified

Abstract

Not specified

Authors: Anne Dropmann, Tatjana Dediulia, Katja Breitkopf-Heinlein, Hanna Korhonen, Michel Janicot, Susanne N. Weber, Maria Thomas, Albrecht Piiper, Esther Bertran, Isabel Fabregat, Kerstin Abshagen, Jochen Hess, Peter Angel, Cédric Coulouarn, Steven Dooley, Nadja M. Meindl-Beinker

Date Published: 12th Apr 2016

Publication Type: Not specified

Abstract

Not specified

Authors: A. Schmoldt, H. F. Benthe, G. Haberland

Date Published: 1st Sep 1975

Publication Type: Journal

Abstract

Not specified

Author: M. TESSENYI, S.N. WEBER, M.C. REICHERT, S.C. KARATAYLI, R.A. HALL, S. QIAO, U. BOEHM, T. BRUNS, S. DOOLEY, F. LAMMERT, E. KARATAYLI

Date Published: No date defined

Publication Type: Journal

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH