Protein modification with ISG15 blocks coxsackievirus pathology by antiviral and metabolic reprogramming.

Abstract:

Protein modification with ISG15 (ISGylation) represents a major type I IFN-induced antimicrobial system. Common mechanisms of action and species-specific aspects of ISGylation, however, are still ill defined and controversial. We used a multiphasic coxsackievirus B3 (CV) infection model with a first wave resulting in hepatic injury of the liver, followed by a second wave culminating in cardiac damage. This study shows that ISGylation sets nonhematopoietic cells into a resistant state, being indispensable for CV control, which is accomplished by synergistic activity of ISG15 on antiviral IFIT1/3 proteins. Concurrent with altered energy demands, ISG15 also adapts liver metabolism during infection. Shotgun proteomics, in combination with metabolic network modeling, revealed that ISG15 increases the oxidative capacity and promotes gluconeogenesis in liver cells. Cells lacking the activity of the ISG15-specific protease USP18 exhibit increased resistance to clinically relevant CV strains, therefore suggesting that stabilizing ISGylation by inhibiting USP18 could be exploited for CV-associated human pathologies.

SEEK ID: https://seek.lisym.org/publications/220

PubMed ID: 32195343

Projects: LiSyM network

Publication type: Not specified

Journal: Sci Adv

Citation: Sci Adv. 2020 Mar 11;6(11):eaay1109. doi: 10.1126/sciadv.aay1109. eCollection 2020 Mar.

Date Published: 21st Mar 2020

Registered Mode: Not specified

Authors: M. Kespohl, C. Bredow, K. Klingel, M. Voss, A. Paeschke, M. Zickler, W. Poller, Z. Kaya, J. Eckstein, H. Fechner, J. Spranger, M. Fahling, E. K. Wirth, L. Radoshevich, F. Thery, F. Impens, N. Berndt, K. P. Knobeloch, A. Beling

Help
help Creator
Creators
Not specified
Submitter
Activity

Views: 442

Created: 15th Jun 2020 at 13:42

help Attributions

None

Related items

Powered by
(v.1.10.1)
Copyright © 2008 - 2020 The University of Manchester and HITS gGmbH