Publications

What is a Publication?
69 Publications visible to you, out of a total of 69

Abstract

Not specified

Authors: Yoon Seok Jung, Kamalakannan Radhakrishnan, Seddik Hammad, Sebastian Müller, Johannes Müller, Jung-Ran Noh, Jina kim, In-Kyu Lee, Sung Jin Cho, Don-Kyu Kim, Yong-Hoon Kim, Chul-Ho Lee, Steven Dooley, Hueng-Sik Choi

Date Published: 1st Mar 2024

Publication Type: Journal

Abstract (Expand)

Prerequisite for a successful proteomics experiment is a high-quality lysis of the sample of interest, resulting in a large number of identified proteins as well as a high coverage of protein sequences. Therefore, the choice of suitable lysis conditions is crucial. Many buffers were previously employed in proteomics studies, yet a comprehensive comparison of lysate preparation conditions was so far missing. In this study, we compared the efficiency of four commonly used lysis buffers, containing the agents NP40, SDS, urea or GdnHCl, in four different types of biological samples (suspension and adherent cell lines, primary mouse cells and mouse liver tissue). After liquid chromatography-mass spectrometry (LC-MS) measurement and MaxQuant analysis, we compared chromatograms, intensities, number of identified proteins and the localization of the identified proteins. Overall, SDS emerged as the most reliable reagent, ensuring stable performance and reproducibility across diverse samples. Furthermore, our data advocated for a dual-sample lysis approach, including that the resulting pellet is lysed again after the initial lysis with a urea lysis buffer and subsequently both lysates are combined for a single LC-MS run to maximize the proteome coverage. However, none of the investigated lysis buffers proved to be superior in every category, indicating that the lysis buffer of choice depends on the proteins of interest and on the biological question. Further, we demonstrated with our systematic studies the establishment of conditions that allows to perform global proteomics and affinity purification-based interactome characterization from the same lysate. In sum our results provide guidance for the best-suited lysis buffer for mass spectrometry-based proteomics depending on the question of interest.

Authors: Barbara Helm, Pauline Hansen, Li Lai, Luisa Schwarzmüller, Simone M. Clas, Annika Richter, Max Ruwolt, Fan Liu, Dario Frey, Lorenza A. D’Alessandro, Wolf-Dieter Lehmann, Marcel Schilling, Dominic Helm, Dorothea Fiedler, Ursula Klingmüller

Date Published: 21st Feb 2024

Publication Type: Journal

Abstract (Expand)

Abstract The extracellular environment regulates the structures and functions of cells, from the molecular to the tissue level. However, the underlying mechanisms influencing the organization andncing the organization and adaptation of cancer in three‐dimensional (3D) environments are not yet fully understood. In this study, the influence of the viscosity of the environment is investigated on the mechanical adaptability of human hepatoma cell (HepG2) spheroids in vitro, using 3D microcapsule reactors formed with droplet‐based microfluidics. To mimic the environment with different mechanical properties, HepG2 cells are encapsulated in alginate core–shell reservoirs (i.e., microcapsules) with different core viscosities tuned by incorporating carboxymethylcellulose. The significant changes in cell and spheroid distribution, proliferation, and cytoskeleton are observed and quantified. Importantly, changes in the expression and distribution of F‐actin and keratin 8 indicate the relation between spheroid stiffness and viscosity of the surrounding medium. The increase of F‐actin levels in the viscous medium can indicate an enhanced ability of tumor cells to traverse dense tissue. These results demonstrate the ability of cancer cells to dynamically adapt to the changes in extracellular viscosity, which is an important physical cue regulating tumor development, and thus of relevance in cancer biology.

Authors: Xuan Peng, Željko Janićijević, Sandy Lemm, Sandra Hauser, Michael Knobel, Jens Pietzsch, Michael Bachmann, Larysa Baraban

Date Published: 25th Jan 2024

Publication Type: Journal

Abstract (Expand)

Abstract Chronic liver diseases are worldwide on the rise. Due to the rapidly increasing incidence, in particular in Western countries, metabolic dysfunction-associated steatotic liver disease (MASLD)otic liver disease (MASLD) is gaining importance as the disease can develop into hepatocellular carcinoma. Lipid accumulation in hepatocytes has been identified as the characteristic structural change in MASLD development, but molecular mechanisms responsible for disease progression remained unresolved. Here, we uncover in primary hepatocytes from a preclinical model fed with a Western diet (WD) an increased basal MET phosphorylation and a strong downregulation of the PI3K-AKT pathway. Dynamic pathway modeling of hepatocyte growth factor (HGF) signal transduction combined with global proteomics identifies that an elevated basal MET phosphorylation rate is the main driver of altered signaling leading to increased proliferation of WD-hepatocytes. Model-adaptation to patient-derived hepatocytes reveal patient-specific variability in basal MET phosphorylation, which correlates with patient outcome after liver surgery. Thus, dysregulated basal MET phosphorylation could be an indicator for the health status of the liver and thereby inform on the risk of a patient to suffer from liver failure after surgery.

Authors: Sebastian Burbano de Lara, Svenja Kemmer, Ina Biermayer, Svenja Feiler, Artyom Vlasov, Lorenza A D’Alessandro, Barbara Helm, Christina Mölders, Yannik Dieter, Ahmed Ghallab, Jan G Hengstler, Christiane Körner, Madlen Matz-Soja, Christina Götz, Georg Damm, Katrin Hoffmann, Daniel Seehofer, Thomas Berg, Marcel Schilling, Jens Timmer, Ursula Klingmüller

Date Published: 12th Jan 2024

Publication Type: Journal

Abstract (Expand)

Abstract Objective Extracellular Matrix Protein 1 ( Ecm1 ) knockout results in latent transforming growth factor-β1 (LTGF-β1) activation and hepatic fibrosis with rapid mortality in mice. In chronicctor-β1 (LTGF-β1) activation and hepatic fibrosis with rapid mortality in mice. In chronic liver disease (CLD), ECM1 is gradually lost with increasing CLD severity. We investigated the underlying mechanism and its impact on CLD progression. Design RNAseq was performed to analyze gene expression in the liver. Functional assays were performed using hepatic stellate cells (HSCs), WT and Ecm1 -KO mice, and liver tissue. Computer modeling was used to verify experimental findings. Results RNAseq shows that expression of thrombospondins (TSPs), ADAMTS proteases, and matrix metalloproteinases (MMPs) increases along with TGF-β1 target, pro-fibrotic genes in liver tissue of Ecm1 -KO mice. In LX-2 or primary human HSCs, ECM1 prevented TSP-1-, ADAMTS1-, and MMP-2/9-mediated LTGF-β1 activation. I n vitro interaction assays demonstrated that ECM1 inhibited LTGF-β1 activation through interacting with TSP-1 and ADAMTS1 via their respective, intrinsic KRFK or KTFR amino acid sequences, while also blunting MMP-2/9 proteolytic activity. In mice, AAV8-mediated ECM1 overexpression attenuated KRFK-induced LTGF-β1 activation and fibrosis, while KTFR reversed Ecm1 -KO-induced liver injury. Furthermore, a correlation between decreasing ECM1 and increasing protease expression and LTGF-β1 activation was found in CLD patients. A computational model validated the impact of restoring ECM1 on reducing LTGF-β1 activation, HSC activation, and collagen deposition in the liver. Conclusion Our findings underscore the hepatoprotective effect of ECM1, which inhibits protease-mediated LTGF-β1 activation, suggesting that preventing its decrease or restoring ECM1 function in the liver could serve as a novel and safer than direct TGF-β1-directed therapies in CLD. One sentence summary ECM1 loss fails to prevent TSP/ADAMTS/MMP-mediated LTGF-β1 activation, leading to liver fibrosis progression.

Authors: Frederik Link, Yujia Li, Jieling Zhao, Stefan Munker, Weiguo Fan, Zeribe Nwosu, Ye Yao, Seddik Hammad, Roman Liebe, Hui Liu, Chen Shao, Bing Sun, Natalie J. Török, Huiguo Ding, Matthias P. A. Ebert, Hong-Lei Weng, Peter ten Dijke, Dirk Drasdo, Steven Dooley, Sai Wang

Date Published: 12th Dec 2023

Publication Type: Journal

Abstract (Expand)

Abstract Type I interferons (IFNs) play a central role not only in innate immunity against viral infection, but also in the antitumour response, e.g. through a direct impact on cell proliferation.act on cell proliferation. Particularly for cancer arising in the context of chronic inflammation, constant exposure to IFNs may constitute a strong selective pressure during tumour evolution. Expansion of neoplastic subclones resistant to the antiproliferative effects of IFNs may contribute to immunoediting of tumours, leading to more aggressive disease. Experimental evidence for this development of IFN-insensitivity has been scarce and its molecular mechanism is unclear. In this study we demonstrate that six weeks exposure of cells to IFN-β in vitro reduces their sensitivity to its antiproliferative effects, and that this phenotype was stable for up to four weeks. Furthermore, we observed substantial differences in cellular sensitivity to growth inhibition by IFN-β in a panel of ten different liver cancer cell lines, most prominently in a pair of highly dedifferentiated cell lines, and least in cells from well-differentiated tumours. In both, long-term IFN selection and in dedifferentiated tumour cell lines, we found IFNAR2 expression to be substantially reduced, suggesting the receptor complex to be a sensitive target amenable to immunoediting. Beyond new insights into possible molecular processes in tumour evolution, these findings might prove valuable for the development of biomarkers allowing to stratify tumours for their sensitivity to IFN treatment in the context of patient tailored therapies.

Authors: Felix Hiebinger, Aiste Kudulyte, Huanting Chi, Sebastian Burbano De Lara, Doroteja Ilic, Barbara Helm, Hendrik Welsch, Viet Loan Dao Thi, Ursula Klingmüller, Marco Binder

Date Published: 1st Dec 2023

Publication Type: Journal

Abstract (Expand)

Abstract Gene regulation plays a critical role in the cellular processes that underlie human health and disease. The regulatory relationship between transcription factors (TFs), key regulators of genes), key regulators of gene expression, and their target genes, the so called TF regulons, can be coupled with computational algorithms to estimate the activity of TFs. However, to interpret these findings accurately, regulons of high reliability and coverage are needed. In this study, we present and evaluate a collection of regulons created using the CollecTRI meta-resource containing signed TF–gene interactions for 1186 TFs. In this context, we introduce a workflow to integrate information from multiple resources and assign the sign of regulation to TF–gene interactions that could be applied to other comprehensive knowledge bases. We find that the signed CollecTRI-derived regulons outperform other public collections of regulatory interactions in accurately inferring changes in TF activities in perturbation experiments. Furthermore, we showcase the value of the regulons by examining TF activity profiles in three different cancer types and exploring TF activities at the level of single-cells. Overall, the CollecTRI-derived TF regulons enable the accurate and comprehensive estimation of TF activities and thereby help to interpret transcriptomics data.

Authors: Sophia Müller-Dott, Eirini Tsirvouli, Miguel Vazquez, Ricardo O Ramirez Flores, Pau Badia-i-Mompel, Robin Fallegger, Dénes Türei, Astrid Lægreid, Julio Saez-Rodriguez

Date Published: 10th Nov 2023

Publication Type: Journal

Abstract (Expand)

MOTIVATION: Biological tissues are dynamic and highly organized. Multi-scale models are helpful tools to analyse and understand the processes determining tissue dynamics. These models usually depend on parameters that need to be inferred from experimental data to achieve a quantitative understanding, to predict the response to perturbations, and to evaluate competing hypotheses. However, even advanced inference approaches such as approximate Bayesian computation (ABC) are difficult to apply due to the computational complexity of the simulation of multi-scale models. Thus, there is a need for a scalable pipeline for modeling, simulating, and parameterizing multi-scale models of multi-cellular processes. RESULTS: Here, we present FitMultiCell, a computationally efficient and user-friendly open-source pipeline that can handle the full workflow of modeling, simulating, and parameterizing for multi-scale models of multi-cellular processes. The pipeline is modular and integrates the modeling and simulation tool Morpheus and the statistical inference tool pyABC. The easy integration of high-performance infrastructure allows to scale to computationally expensive problems. The introduction of a novel standard for the formulation of parameter inference problems for multi-scale models additionally ensures reproducibility and reusability. By applying the pipeline to multiple biological problems, we demonstrate its broad applicability, which will benefit in particular image-based systems biology. AVAILABILITY AND IMPLEMENTATION: FitMultiCell is available open-source at https://gitlab.com/fitmulticell/fit.

Authors: E. Alamoudi, Y. Schalte, R. Muller, J. Starruss, N. Bundgaard, F. Graw, L. Brusch, J. Hasenauer

Date Published: 1st Nov 2023

Publication Type: Journal

Abstract (Expand)

Abstract The understanding of the contribution of the tumour microenvironment to cancer progression and metastasis, in particular the interplay between tumour cells, fibroblasts and the extracellularasts and the extracellular matrix has grown tremendously over the last years. Lysyl oxidases are increasingly recognised as key players in this context, in addition to their function as drivers of fibrotic diseases. These insights have considerably stimulated drug discovery efforts towards lysyl oxidases as targets over the last decade. This review article summarises the biochemical and structural properties of theses enzymes. Their involvement in tumour progression and metastasis is highlighted from a biochemical point of view, taking into consideration both the extracellular and intracellular action of lysyl oxidases. More recently reported inhibitor compounds are discussed with an emphasis on their discovery, structure‐activity relationships and the results of their biological characterisation. Molecular probes developed for imaging of lysyl oxidase activity are reviewed from the perspective of their detection principles, performance and biomedical applications.

Authors: Reik Löser, Manuela Kuchar, Robert Wodtke, Christin Neuber, Birgit Belter, Klaus Kopka, Lakshmi Santhanam, Jens Pietzsch

Date Published: 15th Sep 2023

Publication Type: Journal

Abstract (Expand)

Type I interferons (IFNs) play a central role not only in innate immunity against viral infection, but also in the antitumour response. Apart from indirect immune-modulatory and anti-angiogenic effects, they have direct impact on cell proliferation. Particularly for cancer arising in the context of chronic inflammation, constant exposure to IFNs may constitute a strong selective pressure during tumour evolution. Expansion of neoplastic subclones or -populations that developed resistance to the antiproliferative effects of IFNs might constitute an important contribution to immunoediting of the cancer cells leading to more aggressive and metastasising disease. Experimental evidence for this development of IFN-insensitivity has been scarce and its molecular mechanism is unclear. In this study we demonstrate that prolonged (six weeks) exposure of cells to IFN-β in vitro reduces their sensitivity to its antiproliferative effects, and that this phenotype was stable for up to four weeks. Furthermore, we observed substantial differences in cellular sensitivity to growth inhibition by IFN-β in a panel of ten different liver cancer cell lines of varying malignity. IFN-resistance was most prominent in a pair of highly dedifferentiated cell lines, and least in cells from well-differentiated tumours, fostering the hypothesis of IFN-driven immunoediting in advanced cancers. In both settings, long-term IFN selection in vitro as well as in dedifferentiated tumour cell lines, we found IFNAR expression to be substantially reduced, suggesting the receptor complex, in particular IFNAR2, to be a sensitive target amenable to immunoediting. Beyond new insights into possible molecular processes in tumour evolution, these findings might prove valuable for the development of biomarkers allowing to stratify tumours for their sensitivity to IFN treatment in the context of patient tailored therapies.

Authors: Felix Hiebinger, Aiste Kudulyte, Huanting Chi, Sebastian Burbano De Lara, Barbara Helm, Hendrik Welsch, Viet Loan Dao Thi, Ursula Klingmüller, Marco Binder

Date Published: 24th Aug 2023

Publication Type: Journal

Abstract (Expand)

Objective: Transforming growth factor-β1 (TGF-β1) plays important roles in chronic liver diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD), which involves variouslves various biological processes including dysfunctional cholesterol metabolism contributing to progression to metabolic dysfunction-associated steatohepatitis (MASH) and hepatocellular carcinoma (HCC). However, how TGF-β1 signaling and cholesterol metabolism affects each other in MASLD is yet unknown. Design: Changes in transcription of genes associated with cholesterol metabolism were assessed by RNA-Seq of AML12 cells and mouse primary hepatocytes (MPH) treated with TGF-β1. Functional assays were performed on AML12 cells (untreated, TGF-β1 treated, or subjected to cholesterol enrichment (CE) or depletion (CD)), and on mice injected with adeno-associated virus 8 (AAV8)-Control/TGF-β1. Results: TGF-β1 inhibited mRNA expression of several cholesterol metabolism regulatory genes, including rate-limiting enzymes of cholesterol biosynthesis in AML12 cells, MPHs, and AAV8-TGF- β1-treated mice. Total cholesterol levels in AML12 cells, as well as lipid droplet accumulation in AML12 cells and AAV-treated mice were also reduced. Smad2/3 phosphorylation following 2 h TGF-β1 treatment persisted after CE or CD and was mildly increased following CD, while TGF-β1-mediated AKT phosphorylation (30 min) was inhibited by CE. Furthermore, CE protected AML12 cells from several effects mediated by 72 h incubation with TGF-β1, including EMT, actin polymerization, and apoptosis. CD mimicked the outcome of long term TGF-β1 administration, an effect that was blocked by an inhibitor of the type I TGF-β receptor. Additionally, the supernatant of CE- or CD-treated AML12 cells inhibited or promoted, respectively, the activation of LX-2 hepatic stellate cells. Conclusion: TGF-β1 inhibits cholesterol metabolism while cholesterol attenuates TGF-β1 downstream effects in hepatocytes.

Authors: Sai Wang, Frederik Link, Mei Han, Roman Liebe, Ye Yao, Seddik Hammad, Anne Dropmann, Roohi Chaudhary, Anastasia Asimakopoulos, Marinela Krizanac, Ralf Weiskirchen, Yoav I Henis, Marcelo Ehrlich, Matthias Ebert, Steven Dooley

Date Published: 15th Aug 2023

Publication Type: Journal

Abstract (Expand)

Abstract Background and Aims The presence of significant liver fibrosis associated with non‐alcoholic steatohepatitis (NASH) is regarded as the major prognostic factor in non‐alcoholic fatty liverhe major prognostic factor in non‐alcoholic fatty liver disease (NAFLD). Identification of patients at risk for NASH with significant fibrosis is therefore important. Although the established fibrosis score FIB‐4 is suitable to exclude advanced fibrosis, it does not allow the prediction of significant fibrosis in NAFLD patients. We therefore evaluated whether the hepatokine fibroblast growth factor 21 (FGF21), a regulator of glucose and lipid metabolism, might identify ‘at‐risk NASH’ in NAFLD. Methods FGF21 levels were assessed by enzyme‐linked immunosorbent assay in sera from an exploration ( n  = 137) and a validation ( n  = 88) cohort of biopsy‐proven NAFLD patients with different disease activity and fibrosis stages. In addition, we evaluated whether the use of FGF21 could improve risk stratification in NAFLD patients with low (<1.3) or intermediate (1.3–2.67) FIB‐4. Results FGF21 levels could significantly discriminate between NASH and non‐alcoholic fatty liver (NAFL) patients, even in the absence of diabetes. Moreover, patients with NASH and fibrosis ≥F2 showed significantly higher FGF21 levels compared to NAFLD patients without significant fibrosis. Significantly elevated FGF21 levels could even be detected in NAFLD patients with NASH and significant fibrosis despite low or intermediate FIB‐4. Conclusion Serological FGF21 detection might allow the identification of NAFLD patients at risk and improves patient stratification in combination with FIB‐4.

Authors: Martin Franck, Katharina John, Sherin Al Aoua, Monika Rau, Andreas Geier, Jörn M. Schattenberg, Heiner Wedemeyer, Klaus Schulze‐Osthoff, Heike Bantel

Date Published: 3rd Aug 2023

Publication Type: Journal

Abstract

Not specified

Authors: Dirk Drasdo, Jieling Zhao

Date Published: 1st Aug 2023

Publication Type: Journal

Abstract (Expand)

Cancer patients are at a very high risk of serious thrombotic events, often fatal. The causes discussed include the detachment of thrombogenic particles from tumor cells or the adverse effects ofrse effects of chemotherapeutic agents. Cytostatic agents can either act directly on their targets or, in the case of a prodrug approach, require metabolization for their action. Cyclophosphamide (CPA) is a widely used cytostatic drug that requires prodrug activation by cytochrome P450 enzymes (CYP) in the liver. We hypothesize that CPA could induce thrombosis in one of the following ways: (1) damage to endothelial cells (EC) after intra-endothelial metabolization; or (2) direct damage to EC without prior metabolization. In order to investigate this hypothesis, endothelial cells (HUVEC) were treated with CPA in clinically relevant concentrations for up to 8 days. HUVECs were chosen as a model representing the first place of action after intravenous CPA administration. No expression of CYP2B6, CYP3A4, CYP2C9 and CYP2C19 was found in HUVEC, but a weak expression of CYP2C18 was observed. CPA treatment of HUVEC induced DNA damage and a reduced formation of an EC monolayer and caused an increased release of prostacyclin (PGI2) and thromboxane (TXA) associated with a shift of the PGI2/TXA balance to a prothrombotic state. In an in vivo scenario, such processes would promote the risk of thrombus formation.

Authors: Anne Krüger-Genge, Susanne Köhler, Markus Laube, Vanessa Haileka, Sandy Lemm, Karolina Majchrzak, Sarah Kammerer, Christian Schulz, Joachim Storsberg, Jens Pietzsch, Jan-Heiner Küpper, Friedrich Jung

Date Published: 1st Aug 2023

Publication Type: Journal

Abstract

Not specified

Authors: Astrid Ruiz-Margáin, Alessandra Pohlmann, Silke Lanzerath, Melanie Langheinrich, Alejandro Campos-Murguía, Berenice M. Román-Calleja, Robert Schierwagen, Sabine Klein, Frank Erhard Uschner, Maximilian Joseph Brol, Aldo Torre-Delgadillo, Nayelli C. Flores-García, Michael Praktiknjo, Ricardo U. Macías Rodríguez, Jonel Trebicka

Date Published: 1st Aug 2023

Publication Type: Journal

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH