Publications

What is a Publication?
94 Publications visible to you, out of a total of 94

Abstract (Expand)

OBJECTIVE: The rs641738C>T variant located near the membrane-bound O-acyltransferase domain containing 7 (MBOAT7) locus is associated with fibrosis in liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcohol-related liver disease, hepatitis B and C. We aim to understand the mechanism by which the rs641738C>T variant contributes to pathogenesis of NAFLD. DESIGN: Mice with hepatocyte-specific deletion of MBOAT7 (Mboat7(Deltahep)) were generated and livers were characterised by histology, flow cytometry, qPCR, RNA sequencing and lipidomics. We analysed the association of rs641738C>T genotype with liver inflammation and fibrosis in 846 NAFLD patients and obtained genotype-specific liver lipidomes from 280 human biopsies. RESULTS: Allelic imbalance analysis of heterozygous human liver samples pointed to lower expression of the MBOAT7 transcript on the rs641738C>T haplotype. Mboat7(Deltahep) mice showed spontaneous steatosis characterised by increased hepatic cholesterol ester content after 10 weeks. After 6 weeks on a high fat, methionine-low, choline-deficient diet, mice developed increased hepatic fibrosis as measured by picrosirius staining (p<0.05), hydroxyproline content (p<0.05) and transcriptomics, while the inflammatory cell populations and inflammatory mediators were minimally affected. In a human biopsied NAFLD cohort, MBOAT7 rs641738C>T was associated with fibrosis (p=0.004) independent of the presence of histological inflammation. Liver lipidomes of Mboat7(Deltahep) mice and human rs641738TT carriers with fibrosis showed increased total lysophosphatidylinositol levels. The altered lysophosphatidylinositol and phosphatidylinositol subspecies in MBOAT7(Deltahep) livers and human rs641738TT carriers were similar. CONCLUSION: Mboat7 deficiency in mice and human points to an inflammation-independent pathway of liver fibrosis that may be mediated by lipid signalling and a potentially targetable treatment option in NAFLD.

Authors: V. R. Thangapandi, O. Knittelfelder, M. Brosch, E. Patsenker, O. Vvedenskaya, S. Buch, S. Hinz, A. Hendricks, M. Nati, A. Herrmann, D. R. Rekhade, T. Berg, M. Matz-Soja, K. Huse, E. Klipp, J. K. Pauling, J. A. Wodke, J. Miranda Ackerman, M. V. Bonin, E. Aigner, C. Datz, W. von Schonfels, S. Nehring, S. Zeissig, C. Rocken, A. Dahl, T. Chavakis, F. Stickel, A. Shevchenko, C. Schafmayer, J. Hampe, P. Subramanian

Date Published: 26th Jun 2020

Publication Type: Journal

Abstract (Expand)

A standardized approach to annotating computational biomedical models and their associated files can facilitate model reuse and reproducibility among research groups, enhance search and retrieval of models and data, and enable semantic comparisons between models. Motivated by these potential benefits and guided by consensus across the COmputational Modeling in BIology NEtwork (COMBINE) community, we have developed a specification for encoding annotations in Open Modeling and EXchange (OMEX)-formatted archives. Distributing modeling projects within these archives is a best practice established by COMBINE, and the OMEX metadata specification presented here provides a harmonized, community-driven approach for annotating a variety of standardized model and data representation formats within an archive. The specification primarily includes technical guidelines for encoding archive metadata, so that software tools can more easily utilize and exchange it, thereby spurring broad advancements in model reuse, discovery, and semantic analyses.

Authors: Maxwell L. Neal, John H. Gennari, Dagmar Waltemath, David P. Nickerson, Matthias König

Date Published: 25th Jun 2020

Publication Type: Journal

Abstract (Expand)

Small‐molecule flux in tissue‐microdomains is essential for organ function, but knowledge of this process is scant due to the lack of suitable methods. We developed two independent techniques that allow the quantification of advection (flow) and diffusion in individual bile canaliculi and in interlobular bile ducts of intact livers in living mice, namely Fluorescence Loss After Photoactivation (FLAP) and Intravital Arbitrary Region Image Correlation Spectroscopy (IVARICS). The results challenge the prevailing ‘mechano‐osmotic’ theory of canalicular bile flow. After active transport across hepatocyte membranes bile acids are transported in the canaliculi primarily by diffusion. Only in the interlobular ducts, diffusion is augmented by regulatable advection. Photoactivation of fluorescein bis‐(5‐carboxymethoxy‐2‐nitrobenzyl)‐ether (CMNB‐caged fluorescein) in entire lobules demonstrated the establishment of diffusive gradients in the bile canalicular network and the sink function of interlobular ducts. In contrast to the bile canalicular network, vectorial transport was detected and quantified in the mesh of interlobular bile ducts. In conclusion, the liver consists of a diffusion dominated canalicular domain, where hepatocytes secrete small molecules and generate a concentration gradient and a flow‐augmented ductular domain, where regulated water influx creates unidirectional advection that augments the diffusive flux.

Authors: Nachiket Vartak, Georgia Guenther, Florian Joly, Amruta Damle‐Vartak, Gudrun Wibbelt, Jörns Fickel, Simone Jörs, Brigitte Begher‐Tibbe, Adrian Friebel, Kasimir Wansing, Ahmed Ghallab, Marie Rosselin, Noemie Boissier, Irene Vignon‐Clementel, Christian Hedberg, Fabian Geisler, Heribert Hofer, Peter Jansen, Stefan Hoehme, Dirk Drasdo, Jan G. Hengstler

Date Published: 19th Jun 2020

Publication Type: Journal

Abstract

Not specified

Authors: Bjoern Goldenbogen, Stephan O. Adler, Oliver Bodeit, Judith AH Wodke, Aviv Korman, Lasse Bonn, Ximena Martinez de la Escalera, Johanna E L Haffner, Maria Krantz, Maxim Karnetzki, Ivo Maintz, Lisa Mallis, Rafael U Moran Torres, Hannah Prawitz, Patrick Segelitz, Martin Seeger, Rune Linding, Edda Klipp

Date Published: 6th May 2020

Publication Type: Unpublished

Abstract (Expand)

Lipid-based RNA nanocarriers have been recently accepted as a novel therapeutic option in humans, thus increasing the therapeutic options for patients. Tailored nanomedicines will enable to treat chronic liver disease (CLD) and end-stage liver cancer, disorders with high mortality and few treatment options. Here, we investigated the curative potential of gene therapy of a key molecule in CLD, the c-Jun N-terminal kinase-2 (Jnk2). Delivery to hepatocytes was achieved using a lipid-based clinically employable siRNA formulation that includes a cationic aminolipid to knockdown Jnk2 (named siJnk2). After assessing the therapeutic potential of siJnk2 treatment, non-invasive imaging demonstrated reduced apoptotic cell death and improved hepatocarcinogenesis was evidenced by improved liver parenchyma as well as ameliorated markers of hepatic damage, reduced fibrogenesis in 1-year-old mice. Strikingly, chronic siJnk2 treatment reduced premalignant nodules, indicative of tumor initiation. Furthermore, siJnk2 treatment led to a significant activation of the immune cell compartment. In conclusion, Jnk2 knockdown in hepatocytes ameliorated hepatitis, fibrogenesis, and initiation of hepatocellular carcinoma (HCC), and hence might be a suitable therapeutic option, to define novel molecular targets for precision medicine in CLD.

Authors: Marius Maximilian Woitok, Miguel Eugenio Zoubek, Dennis Doleschel, Matthias Bartneck, Mohamed Ramadan Mohamed, Fabian Kießling, Wiltrud Lederle, Christian Trautwein, Francisco Javier Cubero

Date Published: 1st May 2020

Publication Type: Journal

Abstract (Expand)

Protein modification with ISG15 (ISGylation) represents a major type I IFN-induced antimicrobial system. Common mechanisms of action and species-specific aspects of ISGylation, however, are still ill defined and controversial. We used a multiphasic coxsackievirus B3 (CV) infection model with a first wave resulting in hepatic injury of the liver, followed by a second wave culminating in cardiac damage. This study shows that ISGylation sets nonhematopoietic cells into a resistant state, being indispensable for CV control, which is accomplished by synergistic activity of ISG15 on antiviral IFIT1/3 proteins. Concurrent with altered energy demands, ISG15 also adapts liver metabolism during infection. Shotgun proteomics, in combination with metabolic network modeling, revealed that ISG15 increases the oxidative capacity and promotes gluconeogenesis in liver cells. Cells lacking the activity of the ISG15-specific protease USP18 exhibit increased resistance to clinically relevant CV strains, therefore suggesting that stabilizing ISGylation by inhibiting USP18 could be exploited for CV-associated human pathologies.

Authors: M. Kespohl, C. Bredow, K. Klingel, M. Voss, A. Paeschke, M. Zickler, W. Poller, Z. Kaya, J. Eckstein, H. Fechner, J. Spranger, M. Fahling, E. K. Wirth, L. Radoshevich, F. Thery, F. Impens, N. Berndt, K. P. Knobeloch, A. Beling

Date Published: 21st Mar 2020

Publication Type: Not specified

Abstract (Expand)

Early disease diagnosis is key to the effective treatment of diseases. Histopathological analysis of human biopsies is the gold standard to diagnose tissue alterations. However, this approach has low resolution and overlooks 3D (three-dimensional) structural changes resulting from functional alterations. Here, we applied multiphoton imaging, 3D digital reconstructions and computational simulations to generate spatially resolved geometrical and functional models of human liver tissue at different stages of non-alcoholic fatty liver disease (NAFLD). We identified a set of morphometric cellular and tissue parameters correlated with disease progression, and discover profound topological defects in the 3D bile canalicular (BC) network. Personalized biliary fluid dynamic simulations predicted an increased pericentral biliary pressure and micro-cholestasis, consistent with elevated cholestatic biomarkers in patients' sera. Our spatially resolved models of human liver tissue can contribute to high-definition medicine by identifying quantitative multiparametric cellular and tissue signatures to define disease progression and provide new insights into NAFLD pathophysiology.

Authors: F. Segovia-Miranda, H. Morales-Navarrete, M. Kucken, V. Moser, S. Seifert, U. Repnik, F. Rost, M. Brosch, A. Hendricks, S. Hinz, C. Rocken, D. Lutjohann, Y. Kalaidzidis, C. Schafmayer, L. Brusch, J. Hampe, M. Zerial

Date Published: 2nd Dec 2019

Publication Type: Not specified

Abstract

Not specified

Authors: Peter L. M. Jansen, Kai Breuhahn, Andreas Teufel, Steven Dooley

Date Published: 22nd Nov 2019

Publication Type: Not specified

Abstract (Expand)

BACKGROUND: Transjugular intrahepatic shunt (TIPSS) is placed in patients with variceal bleeding, refractory ascites, and for other indications. Postprocedural liver function-associated complications (LFAC), including hepatic encephalopathy (HE) and liver failure, represent a major setback. Current methods to predict complications are insufficient. OBJECTIVES: We investigated in a pilot study of patients prior TIPSS placement whether the risk of LFAC correlates with the functional reserve of the liver, as assessed by liver maximum function capacity (LiMAx) test. METHODS: Prospectively we included patients prior TIPSS placement between June 2016 and November 2017 at Saarland University Medical Center. LiMAx was conducted before and after TIPSS placement. Patients with HE prior TIPSS, as well as other factors predisposing to HE, including concomitant sedative drugs, current bacterial infections and sepsis, were excluded. Overt HE (OHE), LiMAx, and laboratory values were assessed before and after TIPSS placement. Data were analyzed in multivariate regression and AUROC models. RESULTS: Mean age was 60 +/- 8 years. Patients (n = 20) were mainly men (65%), and presented predominantly with Child-Pugh class B (90%). Indications for TIPSS were most commonly refractory ascites or recurrent variceal bleeding. In total, 40% of the patients developed LFAC after TIPSS placement. Expectedly, LiMAx decreased and serum bilirubin increased after TIPSS. LiMAx drop >/=20% was the only parameter predicting the development of LFAC after TIPSS in multivariate regression and AUROC analysis. CONCLUSIONS: In multivariate regression models and AUROC analysis, a drop in LiMAx predicted the development of LFAC after TIPSS placement. Additional larger studies assessing OHE and early liver failure separately are warranted.

Authors: M. C. Reichert, A. Schulz, A. Massmann, A. Buecker, M. Glanemann, F. Lammert, M. Malinowski

Date Published: 17th Oct 2019

Publication Type: Journal

Abstract (Expand)

Computational systems biology involves integrating heterogeneous datasets in order to generate models. These models can assist with understanding and prediction of biological phenomena. Generating datasets and integrating them into models involves a wide range of scientific expertise. As a result these datasets are often collected by one set of researchers, and exchanged with others researchers for constructing the models. For this process to run smoothly the data and models must be FAIR-findable, accessible, interoperable, and reusable. In order for data and models to be FAIR they must be structured in consistent and predictable ways, and described sufficiently for other researchers to understand them. Furthermore, these data and models must be shared with other researchers, with appropriately controlled sharing permissions, before and after publication. In this chapter we explore the different data and model standards that assist with structuring, describing, and sharing. We also highlight the popular standards and sharing databases within computational systems biology.

Authors: N. J. Stanford, M. Scharm, P. D. Dobson, M. Golebiewski, M. Hucka, V. B. Kothamachu, D. Nickerson, S. Owen, J. Pahle, U. Wittig, D. Waltemath, C. Goble, P. Mendes, J. Snoep

Date Published: 12th Oct 2019

Publication Type: Not specified

Abstract (Expand)

Transcriptome profiling followed by differential gene expression analysis often leads to lists of genes that are hard to analyze and interpret. Functional genomics tools are powerful approaches for downstream analysis, as they summarize the large and noisy gene expression space into a smaller number of biological meaningful features. In particular, methods that estimate the activity of processes by mapping transcripts level to process members are popular. However, footprints of either a pathway or transcription factor (TF) on gene expression show superior performance over mapping-based gene sets. These footprints are largely developed for humans and their usability in the broadly-used model organism Mus musculus is uncertain. Evolutionary conservation of the gene regulatory system suggests that footprints of human pathways and TFs can functionally characterize mice data. In this paper we analyze this hypothesis. We perform a comprehensive benchmark study exploiting two state-of-the-art footprint methods, DoRothEA and an extended version of PROGENy. These methods infer TF and pathway activity, respectively. Our results show that both can recover mouse perturbations, confirming our hypothesis that footprints are conserved between mice and humans. Subsequently, we illustrate the usability of PROGENy and DoRothEA by recovering pathway/TF-disease associations from newly generated disease sets. Additionally, we provide pathway and TF activity scores for a large collection of human and mouse perturbation and disease experiments (2374). We believe that this resource, available for interactive exploration and download (https://saezlab.shinyapps.io/footprint_scores/), can have broad applications including the study of diseases and therapeutics.

Authors: Christian H. Holland, Bence Szalai, Julio Saez-Rodriguez

Date Published: 1st Sep 2019

Publication Type: Not specified

Abstract (Expand)

The prediction of transcription factor (TF) activities from the gene expression of their targets (i.e., TF regulon) is becoming a widely used approach to characterize the functional status of transcriptional regulatory circuits. Several strategies and data sets have been proposed to link the target genes likely regulated by a TF, each one providing a different level of evidence. The most established ones are (1) manually curated repositories, (2) interactions derived from ChIP-seq binding data, (3) in silico prediction of TF binding on gene promoters, and (4) reverse-engineered regulons from large gene expression data sets. However, it is not known how these different sources of regulons affect the TF activity estimations and, thereby, downstream analysis and interpretation. Here we compared the accuracy and biases of these strategies to define human TF regulons by means of their ability to predict changes in TF activities in three reference benchmark data sets. We assembled a collection of TF–target interactions for 1541 human TFs and evaluated how different molecular and regulatory properties of the TFs, such as the DNA-binding domain, specificities, or mode of interaction with the chromatin, affect the predictions of TF activity. We assessed their coverage and found little overlap on the regulons derived from each strategy and better performance by literature-curated information followed by ChIP-seq data. We provide an integrated resource of all TF–target interactions derived through these strategies, with confidence scores, as a resource for enhanced prediction of TF activities.

Authors: Luz Garcia-Alonso, Christian H. Holland, Mahmoud M. Ibrahim, Denes Turei, Julio Saez-Rodriguez

Date Published: 1st Aug 2019

Publication Type: Not specified

Abstract (Expand)

Two polymorphisms in the promoter region of macrophage migration inhibitory factor (MIF) - rs755622 and rs5844572 - exhibit prognostic relevance in inflammatory diseases. The aim of this study was to investigate a correlation between these MIF promoter polymorphisms and the severity of hepatitis C virus (HCV)-induced liver fibrosis. Our analysis included two independent patient cohorts with HCV-induced liver fibrosis (504 and 443 patients, respectively). The genotype of the single nucleotide polymorphism (SNP) -173 G/C and the repeat number of the microsatellite polymorphism -794 CATT5-8 were determined in DNA samples and correlated with fibrosis severity. In the first cohort, homozygous carriers of the C allele in the rs755622 had lower fibrosis stages compared to heterozygous carriers or wild types (1.25 vs. 2.0 vs. 2.0; p = 0.03). Additionally, >/=7 microsatellite repeats were associated with lower fibrosis stages (<F2) (p = 0.04). Comparable tendencies were observed in the second independent cohort, where fibrosis was assessed using transient elastography. However, once cirrhosis had been established, the C/C genotype and higher microsatellite repeats correlated with impaired liver function and a higher prevalence of hepatocellular carcinoma. Our study demonstrates that specific MIF polymorphisms are associated with disease severity and complications of HCV-induced fibrosis in a stage- and context-dependent manner.

Authors: T. H. Wirtz, P. Fischer, C. Backhaus, I. Bergmann, E. F. Brandt, D. Heinrichs, M. T. Koenen, K. M. Schneider, T. Eggermann, I. Kurth, C. Stoppe, J. Bernhagen, T. Bruns, J. Fischer, T. Berg, C. Trautwein, M. L. Berres

Date Published: 31st Jul 2019

Publication Type: Journal

Abstract (Expand)

BACKGROUND & AIMS: Activation of transforming growth factor beta (TGFB) promotes liver fibrosis by activating hepatic stellate cells (HSCs), but the mechanism of TGFB activation are not clear. We investigated the role of extracellular matrix protein 1 (ECM1), which interacts with extracellular and structural proteins, in TGFB activation in livers of mice. METHODS: We performed studies with e C57BL/6J mice (controls), ECM1-knockout (ECM1-KO) mice, and mice with hepatocyte-specific knockout of EMC1 (ECM1Deltahep). ECM1 or soluble TGFB receptor 2 (TGFBR2) were expressed in livers of mice following injection of an adeno-associated virus vector. Liver fibrosis was induced by carbon tetrachloride (CCl4) administration. Livers were collected from mice and analyzed by histology, immunohistochemistry, in situ hybridization, and immunofluorescence analyses. Hepatocytes and HSCs were isolated from livers of mice and incubated with ECM1; production of cytokines and activation of reporter genes were quantified. Liver tissues from patients with viral or alcohol-induced hepatitis (with different stages of fibrosis) and individuals with healthy liver were analyzed by immunohistochemistry and in situ hybridization. RESULTS: ECM1-KO mice spontaneously developed liver fibrosis and died by 2 months of age without significant hepatocyte damage or inflammation. In liver tissues of mice, we found that ECM1 stabilized extracellular matrix-deposited TGFB in its inactive form by interacting with alphav integrins to prevent activation of HSCs. In liver tissues from patients and in mice with CCl4-induced liver fibrosis, we found an inverse correlation between level of ECM1 and severity of fibrosis. CCl4-induced liver fibrosis was accelerated in ECM1Deltahep mice compared with control mice. Hepatocytes produced the highest levels of ECM1 in livers of mice. Ectopic expression of ECM1 or soluble TGFBR2 in liver prevented fibrogenesis in ECM1-KO mice and prolonged their survival. Ectopic expression of ECM1 in liver also reduced the severity of CCl4-induced fibrosis in mice. CONCLUSIONS: ECM1, produced by hepatocytes, inhibits activation of TGFB and its activation of HSCs to prevent fibrogenesis in mouse liver. Strategies to increase levels of ECM1 in liver might be developed for treatment of fibrosis.

Authors: W. Fan, T. Liu, W. Chen, S. Hammad, T. Longerich, Y. Fu, N. Li, Y. He, C. Liu, Y. Zhang, Q. Lian, X. Zhao, C. Yan, L. Li, C. Yi, Z. Ling, L. Ma, X. Zhao, H. Xu, P. Wang, M. Cong, H. You, Z. Liu, Y. Wang, J. Chen, D. Li, L. Hui, S. Dooley, J. Hou, J. Jia, B. Sun

Date Published: 27th Jul 2019

Publication Type: Not specified

Abstract (Expand)

BACKGROUND & AIMS: Alpha-1 antitrypsin deficiency (AATD) is among the most common genetic disorders. Severe AATD is caused by a homozygous mutation in the SERPINA1 gene that encodes the Glu342Lys substitution (called the Pi*Z mutation, Pi*ZZ genotype). Pi*ZZ carriers may develop lung and liver diseases. Mutation-associated lung disorders have been well studied, but less is known about the effects in liver. We assessed the liver disease burden and associated features in adults with this form of AATD. METHODS: We collected data from 554 Pi*ZZ adults (403 in an exploratory cohort, 151 in a confirmatory cohort), in 9 European countries, with AATD who were homozygous for the Pi*Z mutation, and 234 adults without the Pi*Z mutation (controls), all without pre-existing liver disease. We collected data on demographic parameters, comorbidities, lung- and liver-related health, and blood samples for laboratory analysis. Liver fibrosis was assessed non-invasively via the serum tests Aspartate Aminotransferase to Platelet Ratio Index and HepaScore and via transient elastography. Liver steatosis was determined via transient elastography-based controlled attenuation parameter. We performed histologic analyses of livers from transgenic mice that overexpress the AATD-associated Pi*Z variant. RESULTS: Serum levels of liver enzymes were significantly higher in Pi*ZZ carriers vs controls. Based on non-invasive tests for liver fibrosis, significant fibrosis was suspected in 20%-36% of Pi*ZZ carriers, whereas signs of advanced fibrosis were 9- to 20-fold more common in Pi*ZZ carriers compared to non-carriers. Male sex; age older than 50 years; increased levels of alanine aminotransferase, aspartate aminotransferase, or gamma-glutamyl transferase; and low numbers of platelets were associated with higher liver fibrosis burden. We did not find evidence for a relationship between lung function and liver fibrosis. Controlled attenuation parameter >/=280 dB/m, suggesting severe steatosis, was detected in 39% of Pi*ZZ carriers vs 31% of controls. Carriers of Pi*ZZ had lower serum concentrations of triglyceride and low- and very-low-density lipoprotein cholesterol than controls, suggesting impaired hepatic secretion of lipid. Livers from Pi*Z-overexpressing mice had steatosis and down-regulation of genes involved in lipid secretion. CONCLUSIONS: In studies of AATD adults with the Pi*ZZ mutation, and of Pi*Z-overexpressing mice, we found evidence of liver steatosis and impaired lipid secretion. We identified factors associated with significant liver fibrosis in patients, which could facilitate hepatologic assessment and counseling of individuals who carry the Pi*ZZ mutation. ClinicalTrials.gov Number NCT02929940.

Authors: K. Hamesch, M. Mandorfer, V. M. Pereira, L. S. Moeller, M. Pons, G. E. Dolman, M. C. Reichert, C. V. Schneider, V. Woditsch, J. Voss, C. Lindhauer, M. Fromme, I. Spivak, N. Guldiken, B. Zhou, A. Arslanow, B. Schaefer, H. Zoller, E. Aigner, T. Reiberger, M. Wetzel, B. Siegmund, C. Simoes, R. Gaspar, L. Maia, D. Costa, M. Bento-Miranda, J. van Helden, E. Yagmur, D. Bzdok, J. Stolk, W. Gleiber, V. Knipel, W. Windisch, R. Mahadeva, R. Bals, R. Koczulla, M. Barrecheguren, M. Miravitlles, S. Janciauskiene, F. Stickel, F. Lammert, R. Liberal, J. Genesca, W. J. Griffiths, M. Trauner, A. Krag, C. Trautwein, P. Strnad

Date Published: 24th May 2019

Publication Type: Not specified

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH