Raf kinase inhibitor protein mediates myocardial fibrosis under conditions of enhanced myocardial oxidative stress.

Abstract:

Fibrosis is a hallmark of maladaptive cardiac remodelling. Here we report that genome-wide quantitative trait locus (QTL) analyses in recombinant inbred mouse lines of C57BL/6 J and DBA2/J strains identified Raf Kinase Inhibitor Protein (RKIP) as genetic marker of fibrosis progression. C57BL/6 N-RKIP(-/-) mice demonstrated diminished fibrosis induced by transverse aortic constriction (TAC) or CCl(4) (carbon tetrachloride) treatment compared with wild-type controls. TAC-induced expression of collagen Ialpha2 mRNA, Ki67(+) fibroblasts and marker of oxidative stress 8-hydroxyguanosine (8-dOHG)(+) fibroblasts as well as the number of fibrocytes in the peripheral blood and bone marrow were markedly reduced in C57BL/6 N-RKIP(-/-) mice. RKIP-deficient cardiac fibroblasts demonstrated decreased migration and fibronectin production. This was accompanied by a two-fold increase of the nuclear accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2), the main transcriptional activator of antioxidative proteins, and reduced expression of its inactivators. To test the importance of oxidative stress for this signaling, C57BL/6 J mice were studied. C57BL/6 J, but not the C57BL/6 N-strain, is protected from TAC-induced oxidative stress due to mutation of the nicotinamide nucleotide transhydrogenase gene (Nnt). After TAC surgery, the hearts of Nnt-deficient C57BL/6 J-RKIP(-/-) mice revealed diminished oxidative stress, increased left ventricular (LV) fibrosis and collagen Ialpha2 as well as enhanced basal nuclear expression of Nrf2. In human LV myocardium from both non-failing and failing hearts, RKIP-protein correlated negatively with the nuclear accumulation of Nrf2. In summary, under conditions of Nnt-dependent enhanced myocardial oxidative stress induced by TAC, RKIP plays a maladaptive role for fibrotic myocardial remodeling by suppressing the Nrf2-related beneficial effects.

SEEK ID: https://seek.lisym.org/publications/432

PubMed ID: 30191336

Projects: LiSyM Pillar III: Regeneration and Repair in Acute-on-Chronic Liver Fail...

Publication type: Journal

Journal: Basic Res Cardiol

Citation: Basic Res Cardiol. 2018 Sep 6;113(6):42. doi: 10.1007/s00395-018-0700-3.

Date Published: 6th Sep 2018

Registered Mode: by PubMed ID

Authors: A. Kazakov, R. A. Hall, C. Werner, T. Meier, A. Trouvain, S. Rodionycheva, A. Nickel, F. Lammert, C. Maack, M. Bohm, U. Laufs

help Submitter
Activity

Views: 507

Created: 17th Jul 2024 at 07:52

help Tags

This item has not yet been tagged.

help Attributions

None

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH