Publications

What is a Publication?
385 Publications visible to you, out of a total of 385

Abstract

Not specified

Authors: Peter L. M. Jansen, Kai Breuhahn, Andreas Teufel, Steven Dooley

Date Published: 22nd Nov 2019

Publication Type: Not specified

Abstract (Expand)

Patients with increased liver stiffness have a higher risk of developing cancer, however, the role of fluid-solid tissue interactions and their contribution to liver tumor malignancy remains elusive. Tomoelastography is a novel imaging method for mapping quantitatively the solid-fluid tissue properties of soft tissues in vivo. It provides high resolution and thus has clear clinical applications. In this work we used tomoelastography in 77 participants, with a total of 141 focal liver lesions of different etiologies, to investigate the contributions of tissue stiffness and fluidity to the malignancy of liver tumors. Shear-wave speed (c) as surrogate for tissue stiffness and phase-angle (phi) of the complex shear modulus reflecting tissue fluidity were abnormally high in malignant tumors and allowed them to be distinguished from nontumorous liver tissue with high accuracy [c: AUC = 0.88 with 95% confidence interval (CI) = 0.83-0.94; phi: AUC = 0.95, 95% CI = 0.92-0.98]. Benign focal nodular hyperplasia and hepatocellular adenoma could be distinguished from malignant lesions on the basis of tumor stiffness (AUC = 0.85, 95% CI = 0.72-0.98; sensitivity = 94%, 95% CI = 89-100; and specificity = 85%, 95% CI = 62-100), tumor fluidity (AUC = 0.86, 95% CI = 0.77-0.96; sensitivity = 83%, 95% CI = 72-93; and specificity = 92%, 95% CI = 77-100) and liver stiffness (AUC = 0.84, 95% CI = 0.74-0.94; sensitivity = 72%, 95% CI = 59-83; and specificity = 88%, 95% CI = 69-100), but not on the basis of liver fluidity. Together, hepatic malignancies are characterized by stiff, yet fluid tissue properties, whereas surrounding nontumorous tissue is dominated by solid properties. Tomoelastography can inform noninvasively on the malignancy of suspicious liver lesions by differentiating between benign and malignant lesions with high sensitivity based on stiffness and with high specificity based on fluidity. SIGNIFICANCE: Solid-fluid tissue properties measured by tomoelastography can distinguish malignant from benign masses with high accuracy and provide quantitative noninvasive imaging biomarkers for liver tumors.

Authors: M. Shahryari, H. Tzschatzsch, J. Guo, S. R. Marticorena Garcia, G. Boning, U. Fehrenbach, L. Stencel, P. Asbach, B. Hamm, J. A. Kas, J. Braun, T. Denecke, I. Sack

Date Published: 15th Nov 2019

Publication Type: Not specified

Abstract (Expand)

Globally, primary and secondary liver cancer is one of the most common cancer types, accounting 8.2% of deaths worldwide in 2018. One of the key strategies to improve the patient's prognosis is the early diagnosis, when liver function is still preserved. In hepatocellular carcinoma (HCC), the typical wash-in/wash-out pattern in conventional magnetic resonance imaging (MRI) reaches a sensitivity of 60% and specificity of 96-100%. However, in recent years functional MRI sequences such as hepatocellular-specific gadolinium-based dynamic-contrast enhanced MRI, diffusion-weighted imaging (DWI), and magnetic resonance spectroscopy (MRS) have been demonstrated to improve the evaluation of treatment success and thus the therapeutic decision-making and the patient's outcome. In the preclinical research setting, the VX2 liver rabbit tumor, which once originated from a virus-induced anaplastic squamous cell carcinoma, has played a longstanding role in experimental interventional oncology. Especially the high tumor vascularity allows assessing the treatment response of locoregional interventions such as radiofrequency ablation (RFA) and transcatheter arterial embolization (TACE). Functional MRI has been used to monitor the tumor growth and viability following interventional treatment. Besides promising results, a comprehensive overview of functional MRI sequences used so far in different treatment setting is lacking, thus lowering the comparability of study results. This review offers a comprehensive overview of study protocols, results, and limitations of quantitative MRI sequences applied to evaluate the treatment outcome of VX2 hepatic tumor models, thus generating a unique basis for future MRI studies and potential translation into the clinical setting. Level of Evidence: 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2019.

Authors: S. Keller, J. Chapiro, J. Brangsch, C. Reimann, F. Collettini, I. Sack, L. J. Savic, B. Hamm, S. N. Goldberg, M. Makowski

Date Published: 12th Nov 2019

Publication Type: Not specified

Abstract

Not specified

Authors: Rolf Reiter, Heiko Tzschätzsch, Florian Schwahofer, Matthias Haas, Christian Bayerl, Marion Muche, Dieter Klatt, Shreyan Majumdar, Meltem Uyanik, Bernd Hamm, Jürgen Braun, Ingolf Sack, Patrick Asbach

Date Published: 11th Nov 2019

Publication Type: Not specified

Abstract (Expand)

Liver fibrosis is an advanced liver disease condition, which could progress to cirrhosis and hepatocellular carcinoma. To date, there is no direct approved antifibrotic therapy, and current treatment is mainly the removal of the causative factor. Transforming growth factor (TGF)-beta is a master profibrogenic cytokine and a promising target to treat fibrosis. However, TGF-beta has broad biological functions and its inhibition induces non-desirable side effects, which override therapeutic benefits. Therefore, understanding the pleiotropic effects of TGF-beta and its upstream and downstream regulatory mechanisms will help to design better TGF-beta based therapeutics. Here, we summarize recent discoveries and milestones on the TGF-beta signaling pathway related to liver fibrosis and hepatic stellate cell (HSC) activation, emphasizing research of the last five years. This comprises impact of TGF-beta on liver fibrogenesis related biological processes, such as senescence, metabolism, reactive oxygen species generation, epigenetics, circadian rhythm, epithelial mesenchymal transition, and endothelial-mesenchymal transition. We also describe the influence of the microenvironment on the response of HSC to TGF-beta. Finally, we discuss new approaches to target the TGF-beta pathway, name current clinical trials, and explain promises and drawbacks that deserve to be adequately addressed.

Authors: B. Dewidar, C. Meyer, S. Dooley, A. N. Meindl-Beinker

Date Published: 11th Nov 2019

Publication Type: Not specified

Abstract (Expand)

Numerical modeling of biological systems has become an important assistance for understanding and predicting hepatic diseases like non‐alcoholic fatty liver disease (NAFLD) or the detoxification of drugs and toxines by the liver. We developed a model for the simulation of hepatic function‐perfusion processes using a multiscale and multiphase approach. Here, the liver lobules are described using a homogenization approach with a coupled set of partial differential equations (PDE) based on the Theory of Porous Media (TPM) to describe the coupled blood transport and tissue deformation. For the description of metabolic processes on cellular scale ordinary differential equations (ODE) are used. For many practical and clinical applications, e.g. optimization procedures or uncertainty quantification, a fast but reliable computation is required. Thus, we use a non‐linear model order reduction (MOR) based on an artificial neural network (ANN) for the prediction of simulation results. The practicability of this approach is shown in a comparison between the high fidelity numerical simulation of a NAFLD and the predicted results by the ANN.

Authors: Lena Lambers, Tim Ricken, Matthias König

Date Published: 1st Nov 2019

Publication Type: Journal

Abstract (Expand)

The I148M variant of the Patatin-like phospholipase domain-containing 3 (PNPLA3) protein is associated with an increased risk for liver inflammation and hepatocellular carcinoma (HCC), but the underlying mechanism is unknown. We hypothesized that enhanced CXC chemokine secretion mediates hepatic inflammation that accelerates development of HCC. Expandable primary human (upcyte(R)) hepatocytes and human PLC/PRF/5 hepatoma cells were lentivirally transduced with both PNPLA3 I148M variants and stimulated with lipids. Cytokine levels in culture supernatant and patient sera (n = 80) were analyzed by ELISA. Supernatants were assessed in transmigration experiments, tube formation, and proliferation assays. In vitro, lipid stimulation of transduced hepatocytes dose-dependently induced the production of interleukin-8 and CXCL1 in hepatocytes carrying the PNPLA3 148M variant. In line, sera from PNPLA3 148M-positive patients with alcoholic liver cirrhosis contained higher levels of interleukin-8 and CXCL1 than patients with wild-type PNPLA3. Supernatants from lipid-stimulated hepatocytes with the PNPLA3 148M variant induced enhanced migration of white blood cells, angiogenesis, and cell proliferation in comparison with supernatants from wild-type hepatocytes via CXC receptors 1 and 2. Increased production of interleukin-8 and CXCL1 by hepatocytes carrying the PNPLA3 148M variant contributes to a pro-inflammatory and tumorigenic milieu in patients with alcoholic liver disease. KEY MESSAGES: The PNPLA3 148M variant is associated with cirrhosis and hepatocellular carcinoma. Lipid stimulation of hepatocytes with this variant induces IL-8 and CXCL1. Supernatants from hepatocytes with this variant promote migration and angiogenesis. Sera from patients with this variant contained enhanced levels of IL-8 and CXCL1. The PNPLA3 148M variant contributes to a tumorigenic milieu via IL-8 and CXCL1.

Authors: H. D. Nischalke, P. Lutz, E. Bartok, B. Kramer, B. Langhans, R. Frizler, T. Berg, J. Hampe, S. Buch, C. Datz, F. Stickel, G. Hartmann, C. P. Strassburg, J. Nattermann, U. Spengler

Date Published: 23rd Oct 2019

Publication Type: Journal

Abstract (Expand)

BACKGROUND AND AIMS: Carriage of rs738409:G in patatin-like phospholipase domain containing 3 (PNPLA3) is associated with an increased risk for developing alcohol-related cirrhosis and hepatocellular carcinoma (HCC). Recently, rs72613567:TA in hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) was shown to be associated with a reduced risk for developing alcohol-related liver disease and to attenuate the risk associated with carriage of PNPLA3 rs738409:G. This study explores the risk associations between these two genetic variants and the development of alcohol-related cirrhosis and HCC. APPROACH AND RESULTS: Variants in HSD17B13 and PNPLA3 were genotyped in 6,171 participants, including 1,031 with alcohol-related cirrhosis and HCC, 1,653 with alcohol-related cirrhosis without HCC, 2,588 alcohol misusers with no liver disease, and 899 healthy controls. Genetic associations with the risks for developing alcohol-related cirrhosis and HCC were determined using logistic regression analysis. Carriage of HSD17B13 rs72613567:TA was associated with a lower risk for developing both cirrhosis (odds ratio [OR], 0.79; 95% confidence interval [CI], 0.72-0.88; P = 8.13 x 10(-6) ) and HCC (OR, 0.77; 95% CI, 0.68-0.89; P = 2.27 x 10(-4) ), whereas carriage of PNPLA3 rs738409:G was associated with an increased risk for developing cirrhosis (OR, 1.70; 95% CI, 1.54-1.88; P = 1.52 x 10(-26) ) and HCC (OR, 1.77; 95% CI, 1.58-1.98; P = 2.31 x 10(-23) ). These associations remained significant after adjusting for age, sex, body mass index, type 2 diabetes, and country. Carriage of HSD17B13 rs72613567:TA attenuated the risk for developing cirrhosis associated with PNPLA3 rs738409:G in both men and women, but the protective effect against the subsequent development of HCC was only observed in men (ORallelic , 0.75; 95% CI, 0.64-0.87; P = 1.72 x 10(-4) ). CONCLUSIONS: Carriage of variants in PNPLA3 and HSD17B13 differentially affect the risk for developing advanced alcohol-related liver disease. A genotypic/phenotypic risk score might facilitate earlier diagnosis of HCC in this population.

Authors: F. Stickel, P. Lutz, S. Buch, H. D. Nischalke, I. Silva, V. Rausch, J. Fischer, K. H. Weiss, D. Gotthardt, J. Rosendahl, A. Marot, M. Elamly, M. Krawczyk, M. Casper, F. Lammert, T. W. M. Buckley, A. McQuillin, U. Spengler, F. Eyer, A. Vogel, S. Marhenke, J. von Felden, H. Wege, R. Sharma, S. Atkinson, A. Franke, S. Nehring, V. Moser, C. Schafmayer, L. Spahr, C. Lackner, R. E. Stauber, A. Canbay, A. Link, L. Valenti, J. I. Grove, G. P. Aithal, J. U. Marquardt, W. Fateen, S. Zopf, J. F. Dufour, J. Trebicka, C. Datz, P. Deltenre, S. Mueller, T. Berg, J. Hampe, M. Y. Morgan

Date Published: 21st Oct 2019

Publication Type: Journal

Abstract (Expand)

BACKGROUND: Transjugular intrahepatic shunt (TIPSS) is placed in patients with variceal bleeding, refractory ascites, and for other indications. Postprocedural liver function-associated complications (LFAC), including hepatic encephalopathy (HE) and liver failure, represent a major setback. Current methods to predict complications are insufficient. OBJECTIVES: We investigated in a pilot study of patients prior TIPSS placement whether the risk of LFAC correlates with the functional reserve of the liver, as assessed by liver maximum function capacity (LiMAx) test. METHODS: Prospectively we included patients prior TIPSS placement between June 2016 and November 2017 at Saarland University Medical Center. LiMAx was conducted before and after TIPSS placement. Patients with HE prior TIPSS, as well as other factors predisposing to HE, including concomitant sedative drugs, current bacterial infections and sepsis, were excluded. Overt HE (OHE), LiMAx, and laboratory values were assessed before and after TIPSS placement. Data were analyzed in multivariate regression and AUROC models. RESULTS: Mean age was 60 +/- 8 years. Patients (n = 20) were mainly men (65%), and presented predominantly with Child-Pugh class B (90%). Indications for TIPSS were most commonly refractory ascites or recurrent variceal bleeding. In total, 40% of the patients developed LFAC after TIPSS placement. Expectedly, LiMAx decreased and serum bilirubin increased after TIPSS. LiMAx drop >/=20% was the only parameter predicting the development of LFAC after TIPSS in multivariate regression and AUROC analysis. CONCLUSIONS: In multivariate regression models and AUROC analysis, a drop in LiMAx predicted the development of LFAC after TIPSS placement. Additional larger studies assessing OHE and early liver failure separately are warranted.

Authors: M. C. Reichert, A. Schulz, A. Massmann, A. Buecker, M. Glanemann, F. Lammert, M. Malinowski

Date Published: 17th Oct 2019

Publication Type: Journal

Abstract (Expand)

Computational systems biology involves integrating heterogeneous datasets in order to generate models. These models can assist with understanding and prediction of biological phenomena. Generating datasets and integrating them into models involves a wide range of scientific expertise. As a result these datasets are often collected by one set of researchers, and exchanged with others researchers for constructing the models. For this process to run smoothly the data and models must be FAIR-findable, accessible, interoperable, and reusable. In order for data and models to be FAIR they must be structured in consistent and predictable ways, and described sufficiently for other researchers to understand them. Furthermore, these data and models must be shared with other researchers, with appropriately controlled sharing permissions, before and after publication. In this chapter we explore the different data and model standards that assist with structuring, describing, and sharing. We also highlight the popular standards and sharing databases within computational systems biology.

Authors: N. J. Stanford, M. Scharm, P. D. Dobson, M. Golebiewski, M. Hucka, V. B. Kothamachu, D. Nickerson, S. Owen, J. Pahle, U. Wittig, D. Waltemath, C. Goble, P. Mendes, J. Snoep

Date Published: 12th Oct 2019

Publication Type: Not specified

Abstract (Expand)

Small-molecule flux in tissue-microdomains is essential for organ function, but knowledge of this process is scant due to the lack of suitable methods applicable to live animals. We developed a methodology based on dynamic and correlative imaging for quantitative intravital flux analysis. Application to the liver, challenged the prevailing ‘mechano-osmotic’ theory of canalicular bile flow. After active transport across hepatocyte membranes bile salts are transported in the canaliculi primarily by diffusion. Only in the interlobular ducts, diffusion is augmented by regulatable advection. We corroborate these observations with in silico simulations and pan-species comparisons of lobule size. This study demonstrates a flux mechanism, where the energy invested in transmembrane transport entropically dissipates in a sub-micron scale vessel network.

Authors: Nachiket Vartak, Georgia Guenther, Florian Joly, Amruta Damle-Vartak, Gudrun Wibbelt, Jörns Fickel, Simone Jörs, Brigitte Begher-Tibbe, Adrian Friebel, Kasimir Wansing, Ahmed Ghallab, Marie Rosselin, Noemie Boissier, Irene Vignon-Clementel, Christian Hedberg, Fabian Geisler, Heribert Hofer, Peter Jansen, Stefan Hoehme, Dirk Drasdo, Jan G. Hengstler

Date Published: 26th Sep 2019

Publication Type: Journal

Abstract (Expand)

BACKGROUND: Hepatocellular carcinoma is the fifth most prevalent cancer worldwide. High tumour recurrence is the most common cause of the impaired 5-year survival rate of 26-58% after hepatectomy. The aim of this study was to investigate the impact of preoperative dynamic liver function on long-term outcome. MATERIALS AND METHODS: A total of 146 patients that underwent curative resection for HCC at our department from 2005 to 2016 were analysed. Univariate analysis was calculated using Kaplan-Meier method. Multivariable analysis was carried out with Cox regression. RESULTS: The cumulative 1-, 3-, 5-year survival rates were 83%, 42% and 14%, respectively. Multivariable Cox regression yielded that overall survival depends on disease recurrence, haemoglobin, number of tumours, liver cirrhosis, lymphatic vessel invasion, UICC stage and postoperative complications. The corresponding 1-, 3-, 5-year disease-free survival rates were 73%, 32% and 10%, respectively. Multivariable analysis yielded preoperative liver function capacity (HR 2.421; p=0.014), vascular invasion (HR 2.116; p=0.034) and UICC stage (HR 2.200; p=0.037) as risk factors associated with disease-free survival. A subanalysis with respect to the degree of functional impairment implicated that severity of liver function impairment is correlated with the disease-free survival rate. CONCLUSION: This study shows that preoperative dynamic liver function assessed by LiMAx test as well as severity of underlying liver disease have a significant impact on recurrence-free survival after curative hepatectomy. Patients presenting with impaired liver function should be evaluated for other treatment e.g. liver transplantation or receive closer oncological follow-up.

Authors: E. Bluthner, J. Bednarsch, M. Malinowski, P. Binder, J. Pratschke, M. Stockmann, M. Kaffarnik

Date Published: 9th Sep 2019

Publication Type: Not specified

Abstract (Expand)

A multitude of pharmacokinetics studies have been published. However, due to the lack of an open database, pharmacokinetics data, as well as the corresponding meta-information, have been difficult to access. We present PK-DB (https://pk-db.com), an open database for pharmacokinetics information from clinical trials including pre-clinical research. PK-DB provides curated information on (i) characteristics of studied patient cohorts and subjects (e.g. age, bodyweight, smoking status); (ii) applied interventions (e.g. dosing, substance, route of application); (iii) measured pharmacokinetic time-courses; (iv) pharmacokinetic parameters (e.g. clearance, half-life, area under the curve). Key features are the representation of experimental errors, the normalization of measurement units, annotation of information to biological ontologies, calculation of pharmacokinetic parameters from concentration-time profiles, a workflow for collaborative data curation, strong validation rules on the data, computational access via a REST API as well as human access via a web interface. PK-DB enables meta-analysis based on data from multiple studies and data integration with computational models. A special focus lies on meta-data relevant for individualized and stratified computational modeling with methods like physiologically based pharmacokinetic (PBPK), pharmacokinetic/pharmacodynamic (PK/DB), or population pharmacokinetic (pop PK) modeling.

Authors: Jan Grzegorzewski, Janosch Brandhorst, Dimitra Eleftheriadou, Kathleen Green, Matthias König

Date Published: 9th Sep 2019

Publication Type: Unpublished

Abstract (Expand)

Transcriptome profiling followed by differential gene expression analysis often leads to lists of genes that are hard to analyze and interpret. Functional genomics tools are powerful approaches for downstream analysis, as they summarize the large and noisy gene expression space into a smaller number of biological meaningful features. In particular, methods that estimate the activity of processes by mapping transcripts level to process members are popular. However, footprints of either a pathway or transcription factor (TF) on gene expression show superior performance over mapping-based gene sets. These footprints are largely developed for humans and their usability in the broadly-used model organism Mus musculus is uncertain. Evolutionary conservation of the gene regulatory system suggests that footprints of human pathways and TFs can functionally characterize mice data. In this paper we analyze this hypothesis. We perform a comprehensive benchmark study exploiting two state-of-the-art footprint methods, DoRothEA and an extended version of PROGENy. These methods infer TF and pathway activity, respectively. Our results show that both can recover mouse perturbations, confirming our hypothesis that footprints are conserved between mice and humans. Subsequently, we illustrate the usability of PROGENy and DoRothEA by recovering pathway/TF-disease associations from newly generated disease sets. Additionally, we provide pathway and TF activity scores for a large collection of human and mouse perturbation and disease experiments (2374). We believe that this resource, available for interactive exploration and download (https://saezlab.shinyapps.io/footprint_scores/), can have broad applications including the study of diseases and therapeutics.

Authors: Christian H. Holland, Bence Szalai, Julio Saez-Rodriguez

Date Published: 1st Sep 2019

Publication Type: Not specified

Abstract (Expand)

A quantitative understanding of complex biological systems such as tissues requires reconstructing the structure of the different components of the system. Fluorescence microscopy provides the means to visualize simultaneously several tissue components. However, it can be time consuming and is limited by the number of fluorescent markers that can be used. In this study, we describe a toolbox of algorithms based on convolutional neural networks for the prediction of 3D tissue structures by learning features embedded within single-marker images. As proof of principle, we aimed to predict the network of bile canaliculi (BC) in liver tissue using images of the cortical actin mesh as input. The actin meshwork has a characteristic organization in specific cellular domains, such as BC. However, the use of manually selected features from images of actin is not sufficient to properly reconstruct BC structure. Our deep learning framework showed a remarkable accuracy for the prediction of BC network and was successfully adapted (i.e. transfer learning) to predict the sinusoidal network. This approach allows for a complete reconstruction of tissue microarchitecture using a single fluorescent marker.

Authors: Hernan Morales-Navarrete, Fabian Segovia-Miranda, Marino Zerial, Yannis Kalaidzidis

Date Published: 1st Sep 2019

Publication Type: InProceedings

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH