Publications

What is a Publication?
34 Publications visible to you, out of a total of 34

Abstract

Not specified

Authors: S Hammad, U Dahmen, A Othman, I Recklinghausen, JG Hengstler, U Klingmüller, S Dooley

Date Published: 2019

Publication Type: Not specified

Abstract

Not specified

Authors: S Hammad, J Zhao, Y Yin, A Zaza, D Drasdo, JG Hengstler, S Dooley

Date Published: 2019

Publication Type: Not specified

Abstract

Not specified

Authors: Amruta Damle-Vartak, Brigitte Begher-Tibbe, Georgia Gunther, Fabian Geisler, Nachiket Vartak, Jan G. Hengstler

Date Published: 2019

Publication Type: Book

Abstract

Not specified

Authors: Ahmed Ghallab, Ute Hofmann, Selahaddin Sezgin, Nachiket Vartak, Reham Hassan, Ayham Zaza, Patricio Godoy, Kai Markus Schneider, Georgia Guenther, Yasser A Ahmed, Aya A Abbas, Verena Keitel, Lars Kuepfer, Steven Dooley, Frank Lammert, Christian Trautwein, Michael Spiteller, Dirk Drasdo, Alan F Hofmann, Peter L M Jansen, Jan G Hengstler, Raymond Reif

Date Published: 13th Aug 2018

Publication Type: Not specified

Abstract (Expand)

Acetaminophen (APAP) is one of the most intensively studied compounds that causes hepatotoxicity in the pericentral region of the liver lobules. However, spatio-temporal information on the distribution of APAP, its metabolites and GSH adducts in the liver tissue is not yet available. Here, we addressed the question, whether APAP-GSH adducts and GSH depletion show a zonated pattern and whether the distribution of APAP and its glucuronide as well as sulfate conjugates in liver lobules are zonated. For this purpose, a matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) technique was established, where the MSI images were superimposed onto CYP2E1 immunostained tissue. A time-dependent analysis (5, 15, 30, 60, 120, 240, 480 min) after intraperitoneal administration of 300 mg/kg APAP and a dose-dependent analysis (56 up to 500 mg APAP/kg) at 30 min were performed. The results demonstrate that the MALDI MSI technique allows the assignment of compounds and their metabolites to specific lobular zones. APAP-GSH adducts and GSH depletion occurred predominantly in the CYP2E1-positive zone of the liver, although GSH also decreased in the periportal region. In contrast, the parent compound, APAP sulfate and APAP glucuronide did not show a zonated pattern and tissue concentrations showed a similar time course as the corresponding analyses were performed with blood from the portal and liver veins. In conclusion, the present study is in agreement with the concept that pericentral CYPs form NAPQI that in the same cell binds to and depletes GSH but a lower level of GSH adducts is also observed in the periportal region. The results also provide further evidence of the recently published concept of 'aggravated loss of clearance capacity' according to which also liver tissue that survives intoxication may transiently show decreased metabolic capacity.

Authors: Selahaddin Sezgin, Reham Hassan, Sebastian Zühlke, Lars Kuepfer, Jan G. Hengstler, Michael Spiteller, Ahmed Ghallab

Date Published: 23rd Jul 2018

Publication Type: Not specified

Abstract (Expand)

Tamoxifen (TAM) is commonly used for cell type specific Cre recombinase-induced gene inactivation and in cell fate tracing studies. Inducing a gene knockout by TAM and using non-TAM exposed mice as controls lead to a situation where differences are interpreted as consequences of the gene knockout but in reality result from TAM-induced changes in hepatic metabolism. The degree to which TAM may compromise the interpretation of animal experiments with inducible gene expression still has to be elucidated. Here, we report that TAM strongly attenuates CCl4-induced hepatotoxicity in male C57Bl/6N mice, even after a 10 days TAM exposure-free period. TAM decreased (p < 0.0001) the necrosis index and the level of aspartate- and alanine transaminases in CCl4-treated compared to vehicle-exposed mice. TAM pretreatment also led to the downregulation of CYP2E1 (p = 0.0045) in mouse liver tissue, and lowered its activity in CYP2E1 expressing HepG2 cell line. Furthermore, TAM increased the level of the antioxidant ascorbate, catalase, SOD2, and methionine, as well as phase II metabolizing enzymes GSTM1 and UGT1A1 in CCl4-treated livers. Finally, we found that TAM increased the presence of resident macrophages and recruitment of immune cells in necrotic areas of the livers as indicated by F4/80 and CD45 staining. In conclusion, we reveal that TAM increases liver resistance to CCl4-induced toxicity. This finding is of high relevance for studies using the tamoxifen-inducible expression system particularly if this system is used in combination with hepatotoxic compounds such as CCl4.

Authors: Seddik Hammad, Amnah Othman, Christoph Meyer, Ahmad Telfah, Joerg Lambert, Bedair Dewidar, Julia Werle, Zeribe Chike Nwosu, Abdo Mahli, Christof Dormann, Yan Gao, Kerry Gould, Mei Han, Xiaodong Yuan, Mikheil Gogiashvili, Roland Hergenröder, Claus Hellerbrand, Maria Thomas, Matthias Philip Ebert, Salah Amasheh, Jan G. Hengstler, Steven Dooley

Date Published: 4th Jul 2018

Publication Type: Not specified

Abstract (Expand)

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in children and adolescents today. In comparison to adult disease, pediatric NAFLD may show a periportal localization, which is associated with advanced fibrosis. This study aimed to assess the role of genetic risk variants for histologic disease pattern and severity in childhood NAFLD. METHODS: We studied 14 single nucleotide polymorphisms (SNP) in a cohort of 70 adolescents with biopsy-proven NAFLD. Genotype was compared to an adult control cohort (n=200) and analyzed in relation to histologic disease severity and liver tissue proteomics. RESULTS: Three of the 14 SNPs were significantly associated with pediatric NAFLD after FDR adjustment, rs738409 (PNPLA3, P=2.80x10(-06) ), rs1044498 (ENPP1, P=0.0091) and rs780094 (GCKR, P=0.0281). The severity of steatosis was critically associated with rs738409 (OR=3.25; 95% CI: 1.72-6.52, FDR adjusted P=0.0070). The strongest variants associated with severity of fibrosis were rs1260326, rs780094 (both GCKR) and rs659366 (UCP2). PNPLA3 was associated with a portal pattern of steatosis, inflammation and fibrosis. Proteome profiling revealed decreasing levels of GCKR protein with increasing carriage of the rs1260326/rs780094 minor alleles and down-regulation of the retinol pathway in rs738409 G/G carriers. Computational metabolic modelling highlighted functional relevance of PNPLA3, GCKR and UCP2 for NAFLD development. CONCLUSIONS: This study provides evidence for the role of PNPLA3 as a determinant of portal NAFLD localization and severity of portal fibrosis in children and adolescents, the risk variant being associated with an impaired hepatic retinol metabolism. This article is protected by copyright. All rights reserved.

Authors: C. A. Hudert, S. Selinski, B. Rudolph, H. Blaker, C. Loddenkemper, R. Thielhorn, N. Berndt, K. Golka, C. Cadenas, J. Reinders, S. Henning, P. Bufler, P. L. M. Jansen, H. G. Holzhutter, D. Meierhofer, J. G. Hengstler, S. Wiegand

Date Published: 18th Jan 2018

Publication Type: Not specified

Abstract

Not specified

Authors: Stefan Hoehme, Francois Bertaux, William Weens, Bettina Grasl-Kraupp, Jan G. Hengstler, Dirk Drasdo

Date Published: 28th Dec 2017

Publication Type: Not specified

Abstract (Expand)

Diseases and toxins may lead to death of active liver tissue, resulting in a loss of total clearance capacity at the whole-body level. However, it remains difficult to study, whether the loss of metabolizing tissue is sufficient to explain loss of metabolic capacity of the liver or whether the surviving tissue undergoes an adaptive response to compensate the loss. To understand the cellular impact of toxic liver damage in an in vivo situation, we here used physiologically-based pharmacokinetic modelling to investigate pharmacokinetics of a specifically designed drug cocktail at three different sampling sites of the body in healthy mice and mice treated with carbon tetrachloride (CCl4). Liver zonation was explicitly quantified in the models through immunostaining of cytochrome P450s enzymes. Comparative analyses between the simulated decrease in clearance capacity and the experimentally measured loss in tissue volume indicated that CCl4-induced impairment of metabolic functions goes beyond the mere loss of metabolically active tissue. The here established integrative modelling strategy hence provides mechanistic insights into functional consequences of toxic liver damage in an in vivo situation, which would not have been accessible by conventional methods.

Authors: Arne Schenk, Ahmed Ghallab, Ute Hofmann, Reham Hassan, Michael Schwarz, Andreas Schuppert, Lars Ole Schwen, Albert Braeuning, Donato Teutonico, Jan G. Hengstler, Lars Kuepfer

Date Published: 1st Dec 2017

Publication Type: Not specified

Abstract

Not specified

Authors: Arne Schenk, Ahmed Ghallab, Ute Hofmann, Reham Hassan, Michael Schwarz, Andreas Schuppert, Lars Ole Schwen, Albert Braeuning, Donato Teutonico, Jan G. Hengstler, Lars Kuepfer

Date Published: 1st Dec 2017

Publication Type: Not specified

Abstract (Expand)

Adverse outcome pathways (AOPs) are a recent toxicological construct that connects, in a formalized, transparent and quality-controlled way, mechanistic information to apical endpoints for regulatory purposes. AOP links a molecular initiating event (MIE) to the adverse outcome (AO) via key events (KE), in a way specified by key event relationships (KER). Although this approach to formalize mechanistic toxicological information only started in 2010, over 200 AOPs have already been established. At this stage, new requirements arise, such as the need for harmonization and re-assessment, for continuous updating, as well as for alerting about pitfalls, misuses and limits of applicability. In this review, the history of the AOP concept and its most prominent strengths are discussed, including the advantages of a formalized approach, the systematic collection of weight of evidence, the linkage of mechanisms to apical end points, the examination of the plausibility of epidemiological data, the identification of critical knowledge gaps and the design of mechanistic test methods. To prepare the ground for a broadened and appropriate use of AOPs, some widespread misconceptions are explained. Moreover, potential weaknesses and shortcomings of the current AOP rule set are addressed (1) to facilitate the discussion on its further evolution and (2) to better define appropriate vs. less suitable application areas. Exemplary toxicological studies are presented to discuss the linearity assumptions of AOP, the management of event modifiers and compensatory mechanisms, and whether a separation of toxicodynamics from toxicokinetics including metabolism is possible in the framework of pathway plasticity. Suggestions on how to compromise between different needs of AOP stakeholders have been added. A clear definition of open questions and limitations is provided to encourage further progress in the field.

Authors: M. Leist, A. Ghallab, R. Graepel, R. Marchan, R. Hassan, S. H. Bennekou, A. Limonciel, M. Vinken, S. Schildknecht, T. Waldmann, E. Danen, B. van Ravenzwaay, H. Kamp, I. Gardner, P. Godoy, F. Y. Bois, A. Braeuning, R. Reif, F. Oesch, D. Drasdo, S. Hohme, M. Schwarz, T. Hartung, T. Braunbeck, J. Beltman, H. Vrieling, F. Sanz, A. Forsby, D. Gadaleta, C. Fisher, J. Kelm, D. Fluri, G. Ecker, B. Zdrazil, A. Terron, P. Jennings, B. van der Burg, S. Dooley, A. H. Meijer, E. Willighagen, M. Martens, C. Evelo, E. Mombelli, O. Taboureau, A. Mantovani, B. Hardy, B. Koch, S. Escher, C. van Thriel, C. Cadenas, D. Kroese, B. van de Water, J. G. Hengstler

Date Published: 19th Oct 2017

Publication Type: Not specified

Abstract (Expand)

Carbon tetrachloride-induced liver injury is a thoroughly studied model for regeneration and fibrosis in rodents. Nevertheless, its pattern of liver fibrosis is frequently misinterpreted as portal type. To clarify this, we show that collagen type IV+ "streets" and alpha-SMA+ cells accumulate pericentrally and extend to neighbouring central areas of the liver lobule, forming a 'pseudolobule'. Blood vessels in the center of such pseudolobules are portal veins as indicated by the presence of bile duct cells (CK19+) and the absence of pericentral hepatocytes (glutamine synthetase+). It is critical to correctly describe this pattern of fibrosis, particulary for metabolic zonation studies.

Authors: S. Hammad, A. Braeuning, C. Meyer, F. E. Z. A. Mohamed, J. G. Hengstler, S. Dooley

Date Published: 22nd Aug 2017

Publication Type: Not specified

Abstract

Not specified

Authors: Christoph Thiel, Ute Hofmann, Ahmed Ghallab, Rolf Gebhardt, Jan G. Hengstler, Lars Kuepfer

Date Published: 1st Apr 2017

Publication Type: Not specified

Abstract (Expand)

We describe a two-photon microscopy-based method to evaluate the in vivo systemic transport of compounds. This method comprises imaging of the intact liver, kidney and intestine, the main organsgans responsible for uptake and elimination of xenobiotics and endogenous molecules. The image quality of the acquired movies was sufficient to distinguish subcellular structures like organelles and vesicles. Quantification of the movement of fluorescent dextran and fluorescent cholic acid derivatives in different organs and their sub-compartments over time revealed significant dynamic differences. Calculated half-lives were similar in the capillaries of all investigated organs but differed in the specific sub-compartments, such as parenchymal cells and bile canaliculi of the liver, glomeruli, proximal and distal tubules of the kidney and lymph vessels (lacteals) of the small intestine. Moreover, tools to image immune cells, which can influence transport processes in inflamed tissues, are described. This powerful approach provides new possibilities for the analysis of compound transport in multiple organs and can support physiologically based pharmacokinetic modeling, in order to obtain more precise predictions at the whole body scale.

Authors: Raymond Reif, Ahmed Ghallab, Lynette Beattie, Georgia Günther, Lars Kuepfer, Paul M. Kaye, Jan G. Hengstler

Date Published: 1st Mar 2017

Publication Type: Not specified

Abstract (Expand)

In this review we develop the argument that cholestatic liver diseases, particularly primary biliary cholangitis and primary sclerosing cholangitis (PSC), evolve over time with anatomically an ascending course of the disease process. The first and early lesions are in "downstream" bile ducts. This eventually leads to cholestasis, and this causes bile salt (BS)-mediated toxic injury of the "upstream" liver parenchyma. BS are toxic in high concentration. These concentrations are present in the canalicular network, bile ducts, and gallbladder. Leakage of bile from this network and ducts could be an important driver of toxicity. The liver has a great capacity to adapt to cholestasis, and this may contribute to a variable symptom-poor interval that is often observed. Current trials with drugs that target BS toxicity are effective in only about 50%-60% of primary biliary cholangitis patients, with no effective therapy in PSC. This motivated us to develop and propose a new view on the pathophysiology of primary biliary cholangitis and PSC in the hope that these new drugs can be used more effectively. These views may lead to better stratification of these diseases and to recommendations on a more "tailored" use of the new therapeutic agents that are currently tested in clinical trials. Apical sodium-dependent BS transporter inhibitors that reduce intestinal BS absorption lower the BS load and are best used in cholestatic patients. The effectiveness of BS synthesis-suppressing drugs, such as farnesoid X receptor agonists, is greatest when optimal adaptation is not yet established. By the time cytochrome P450 7A1 expression is reduced these drugs may be less effective. Anti-inflammatory agents are probably most effective in early disease, while drugs that antagonize BS toxicity, such as ursodeoxycholic acid and nor-ursodeoxycholic acid, may be effective at all disease stages. Endoscopic stenting in PSC should be reserved for situations of intercurrent cholestasis and cholangitis, not for cholestasis in end-stage disease. These are arguments to consider a step-wise pathophysiology for these diseases, with therapy adjusted to disease stage. An obstacle in such an approach is that disease stage-defining biomarkers are still lacking. This review is meant to serve as a call to prioritize the development of biomarkers that help to obtain a better stratification of these diseases. (Hepatology 2017;65:722-738).

Authors: P. L. Jansen, A. Ghallab, N. Vartak, R. Reif, F. G. Schaap, J. Hampe, J. G. Hengstler

Date Published: 17th Feb 2017

Publication Type: Not specified

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH