PURPOSE: Evaluation of [(68)Ga]NODAGA-duramycin as a positron emission tomography (PET) tracer of cell death for whole-body detection of chemotherapy-induced organ toxicity. PROCEDURES: Tracer specificity of Ga-68 labeled NODAGA-duramycin was determined in vitro using competitive binding experiments. Organ uptake was analyzed in untreated and doxorubicin, busulfan, and cisplatin-treated mice 2 h after intravenous injection of [(68)Ga]NODAGA-duramycin. In vivo data were validated by immunohistology and blood parameters. RESULTS: In vitro experiments confirmed specific binding of [(68)Ga]NODAGA-duramycin. Organ toxicities were detected successfully using [(68)Ga]NODAGA-duramycin PET/X-ray computed tomography (CT) and confirmed by immunohistochemistry and blood parameter analysis. Organ toxicities in livers and kidneys showed similar trends in PET/CT and immunohistology. Busulfan and cisplatin-related organ toxicities in heart, liver, and lungs were detected earlier by PET/CT than by blood parameters and immunohistology. CONCLUSION: [(68)Ga]NODAGA-duramycin PET/CT was successfully applied to non-invasively detect chemotherapy-induced organ toxicity with high sensitivity in mice. It, therefore, represents a promising alternative to standard toxicological analyses with a high translational potential.
SEEK ID: https://seek.lisym.org/publications/209
PubMed ID: 31396770
Projects: LiSyM Pillar II: Chronic Liver Disease Progression (LiSyM-DP)
Publication type: Not specified
Journal: Mol Imaging Biol
Citation: Mol Imaging Biol. 2019 Aug 8. pii: 10.1007/s11307-019-01417-3. doi: 10.1007/s11307-019-01417-3.
Date Published: 8th Aug 2019
Registered Mode: Not specified
Views: 2184
Created: 9th Jan 2020 at 14:50
Last updated: 8th Mar 2024 at 07:44
This item has not yet been tagged.
None