Publications

What is a Publication?
36 Publications visible to you, out of a total of 36

Abstract (Expand)

BACKGROUND: Patients with advanced chronic liver disease (ACLD) are at high risk of developing hepatocellular carcinoma (HCC). Therefore, biannual surveillance is recommended. This large-scale multicenter study aimed to stratify the risk of HCC development in ACLD. METHODS: From 3016 patients with ACLD screened in 17 European and Chinese centers, 2340 patients with liver stiffness measurement (LSM) determined using different techniques (two-dimensional shear-wave elastography [2D-SWE], transient elastography, and point shear-wave elastography) and with different disease severities were included. Cox regression was used to explore risk factors for HCC. We used these data to create an algorithm, named PLEASE, but referred to in this manuscript as "the algorithm"; the algorithm was validated in internal and two external cohorts across elastography techniques. RESULTS: HCC developed in 127 (5.4%) patients during follow-up. LSM by 2D-SWE (hazard ratio: 2.28) was found to be associated with developing HCC, alongside age, sex, etiology, and platelet count (C-index: 0.8428). We thus established the algorithm with applicable cutoffs, assigning a maximum of six points: platelet count less than 150x10(9)/l, LSM greater than or equal to 15 kPa, age greater than or equal to 50 years, male sex, controlled/uncontrolled viral hepatitis, or presence of steatotic liver diseases. Within 2 years, with a median follow-up of 13.7 months, patients in the high-risk group (>/=4 points) had an HCC incidence of 15.6% (95% confidence interval [CI], 12.1% to 18.7%) compared with the low-risk group, at 1.7% (95% CI, 0.9% to 2.5%). CONCLUSIONS: Our algorithm stratified patients into two groups: those at higher risk of developing HCC and those at lower risk. Our data provide equipoise to test the prospective utility of the algorithm with respect to clinical decisions about screening patients with ACLD for incident HCC. (Funded by the German Research Foundation and others; ClinicalTrials.gov number, NCT03389152.).

Authors: W. Gu, V. de Ledinghen, C. Aube, A. Krag, C. Strassburg, L. Castera, J. Dumortier, M. Friedrich-Rust, S. Pol, I. Grgurevic, Y. Zeleke, M. Praktiknjo, R. Schierwagen, S. Klein, S. Francque, H. Gottfriedova, I. Sporea, P. Schindler, F. Rennebaum, M. J. Brol, M. Schulz, F. E. Uschner, J. Fischer, C. Margini, W. Wang, A. Delamarre, J. Best, A. Canbay, D. J. M. Bauer, B. Simbrunner, G. Semmler, T. Reiberger, J. Boursier, D. N. Rasmussen, V. Vilgrain, A. Guibal, S. Zeuzem, C. Vassord, L. Vonghia, R. Senkerikova, A. Popescu, A. Berzigotti, W. Laleman, M. Thiele, C. Jansen, J. Trebicka

Date Published: 22nd Oct 2024

Publication Type: Journal

Abstract (Expand)

Abstract Background and Aims Steatotic liver disease (SLD) is generally considered to represent a hepatic manifestation of metabolic syndrome and includes a disease spectrum comprising isolated steatosis,ludes a disease spectrum comprising isolated steatosis, metabolic dysfunction‐associated steatohepatitis, liver fibrosis and ultimately cirrhosis. A better understanding of the detailed underlying pathogenic mechanisms of this transition is crucial for the design of new and efficient therapeutic interventions. Thymocyte differentiation antigen (Thy‐1, also known as CD90) expression on fibroblasts controls central functions relevant to fibrogenesis, including proliferation, apoptosis, cytokine responsiveness, and myofibroblast differentiation. Methods The impact of Thy‐1 on the development of SLD and progression to fibrosis was investigated in high‐fat diet (HFD)‐induced SLD wild‐type and Thy‐1‐deficient mice. In addition, the serum soluble Thy‐1 (sThy‐1) concentration was analysed in patients with metabolic dysfunction‐associated SLD stratified according to steatosis, inflammation, or liver fibrosis using noninvasive markers. Results We demonstrated that Thy‐1 attenuates the development of fatty liver and the expression of profibrogenic genes in the livers of HFD‐induced SLD mice. Mechanistically, Thy‐1 directly inhibits the profibrotic activation of nonparenchymal liver cells. In addition, Thy‐1 prevents palmitic acid‐mediated amplification of the inflammatory response of myeloid cells, which might indirectly contribute to the pronounced development of liver fibrosis in Thy‐1‐deficient mice. Serum analysis of patients with metabolically associated steatotic liver disease syndrome revealed that sThy‐1 expression is correlated with liver fibrosis status, as assessed by liver stiffness, the Fib4 score, and the NAFLD fibrosis score. Conclusion Our data strongly suggest that Thy‐1 may function as a fibrosis‐protective factor in mouse and human SLD.

Authors: Valentin Blank, Thomas Karlas, Ulf Anderegg, Johannes Wiegand, Josi Arnold, Linnaeus Bundalian, Gabriela‐Diana Le Duc, Christiane Körner, Thomas Ebert, Anja Saalbach

Date Published: 4th May 2024

Publication Type: Journal

Abstract (Expand)

Abstract The extracellular environment regulates the structures and functions of cells, from the molecular to the tissue level. However, the underlying mechanisms influencing the organization andncing the organization and adaptation of cancer in three‐dimensional (3D) environments are not yet fully understood. In this study, the influence of the viscosity of the environment is investigated on the mechanical adaptability of human hepatoma cell (HepG2) spheroids in vitro, using 3D microcapsule reactors formed with droplet‐based microfluidics. To mimic the environment with different mechanical properties, HepG2 cells are encapsulated in alginate core–shell reservoirs (i.e., microcapsules) with different core viscosities tuned by incorporating carboxymethylcellulose. The significant changes in cell and spheroid distribution, proliferation, and cytoskeleton are observed and quantified. Importantly, changes in the expression and distribution of F‐actin and keratin 8 indicate the relation between spheroid stiffness and viscosity of the surrounding medium. The increase of F‐actin levels in the viscous medium can indicate an enhanced ability of tumor cells to traverse dense tissue. These results demonstrate the ability of cancer cells to dynamically adapt to the changes in extracellular viscosity, which is an important physical cue regulating tumor development, and thus of relevance in cancer biology.

Authors: Xuan Peng, Željko Janićijević, Sandy Lemm, Sandra Hauser, Michael Knobel, Jens Pietzsch, Michael Bachmann, Larysa Baraban

Date Published: 25th Jan 2024

Publication Type: Journal

Abstract (Expand)

MOTIVATION: Biological tissues are dynamic and highly organized. Multi-scale models are helpful tools to analyse and understand the processes determining tissue dynamics. These models usually depend on parameters that need to be inferred from experimental data to achieve a quantitative understanding, to predict the response to perturbations, and to evaluate competing hypotheses. However, even advanced inference approaches such as approximate Bayesian computation (ABC) are difficult to apply due to the computational complexity of the simulation of multi-scale models. Thus, there is a need for a scalable pipeline for modeling, simulating, and parameterizing multi-scale models of multi-cellular processes. RESULTS: Here, we present FitMultiCell, a computationally efficient and user-friendly open-source pipeline that can handle the full workflow of modeling, simulating, and parameterizing for multi-scale models of multi-cellular processes. The pipeline is modular and integrates the modeling and simulation tool Morpheus and the statistical inference tool pyABC. The easy integration of high-performance infrastructure allows to scale to computationally expensive problems. The introduction of a novel standard for the formulation of parameter inference problems for multi-scale models additionally ensures reproducibility and reusability. By applying the pipeline to multiple biological problems, we demonstrate its broad applicability, which will benefit in particular image-based systems biology. AVAILABILITY AND IMPLEMENTATION: FitMultiCell is available open-source at https://gitlab.com/fitmulticell/fit.

Authors: E. Alamoudi, Y. Schalte, R. Muller, J. Starruss, N. Bundgaard, F. Graw, L. Brusch, J. Hasenauer

Date Published: 1st Nov 2023

Publication Type: Journal

Abstract (Expand)

Abstract The understanding of the contribution of the tumour microenvironment to cancer progression and metastasis, in particular the interplay between tumour cells, fibroblasts and the extracellularasts and the extracellular matrix has grown tremendously over the last years. Lysyl oxidases are increasingly recognised as key players in this context, in addition to their function as drivers of fibrotic diseases. These insights have considerably stimulated drug discovery efforts towards lysyl oxidases as targets over the last decade. This review article summarises the biochemical and structural properties of theses enzymes. Their involvement in tumour progression and metastasis is highlighted from a biochemical point of view, taking into consideration both the extracellular and intracellular action of lysyl oxidases. More recently reported inhibitor compounds are discussed with an emphasis on their discovery, structure‐activity relationships and the results of their biological characterisation. Molecular probes developed for imaging of lysyl oxidase activity are reviewed from the perspective of their detection principles, performance and biomedical applications.

Authors: Reik Löser, Manuela Kuchar, Robert Wodtke, Christin Neuber, Birgit Belter, Klaus Kopka, Lakshmi Santhanam, Jens Pietzsch

Date Published: 15th Sep 2023

Publication Type: Journal

Abstract (Expand)

Cancer patients are at a very high risk of serious thrombotic events, often fatal. The causes discussed include the detachment of thrombogenic particles from tumor cells or the adverse effects ofrse effects of chemotherapeutic agents. Cytostatic agents can either act directly on their targets or, in the case of a prodrug approach, require metabolization for their action. Cyclophosphamide (CPA) is a widely used cytostatic drug that requires prodrug activation by cytochrome P450 enzymes (CYP) in the liver. We hypothesize that CPA could induce thrombosis in one of the following ways: (1) damage to endothelial cells (EC) after intra-endothelial metabolization; or (2) direct damage to EC without prior metabolization. In order to investigate this hypothesis, endothelial cells (HUVEC) were treated with CPA in clinically relevant concentrations for up to 8 days. HUVECs were chosen as a model representing the first place of action after intravenous CPA administration. No expression of CYP2B6, CYP3A4, CYP2C9 and CYP2C19 was found in HUVEC, but a weak expression of CYP2C18 was observed. CPA treatment of HUVEC induced DNA damage and a reduced formation of an EC monolayer and caused an increased release of prostacyclin (PGI2) and thromboxane (TXA) associated with a shift of the PGI2/TXA balance to a prothrombotic state. In an in vivo scenario, such processes would promote the risk of thrombus formation.

Authors: Anne Krüger-Genge, Susanne Köhler, Markus Laube, Vanessa Haileka, Sandy Lemm, Karolina Majchrzak, Sarah Kammerer, Christian Schulz, Joachim Storsberg, Jens Pietzsch, Jan-Heiner Küpper, Friedrich Jung

Date Published: 1st Aug 2023

Publication Type: Journal

Abstract

Not specified

Authors: Astrid Ruiz-Margáin, Alessandra Pohlmann, Silke Lanzerath, Melanie Langheinrich, Alejandro Campos-Murguía, Berenice M. Román-Calleja, Robert Schierwagen, Sabine Klein, Frank Erhard Uschner, Maximilian Joseph Brol, Aldo Torre-Delgadillo, Nayelli C. Flores-García, Michael Praktiknjo, Ricardo U. Macías Rodríguez, Jonel Trebicka

Date Published: 1st Aug 2023

Publication Type: Journal

Abstract

Not specified

Authors: Frank Tacke, Tobias Puengel, Rohit Loomba, Scott L. Friedman

Date Published: 1st Aug 2023

Publication Type: Journal

Abstract (Expand)

Hepatocytes form bile canaliculi that dynamically respond to the signalling activity of bile acids and bile flow. Little is known about their responses to intraluminal pressure. During embryonic development, hepatocytes assemble apical bulkheads that increase the canalicular resistance to intraluminal pressure. Here, we investigate whether they also protect bile canaliculi against elevated pressure upon impaired bile flow in adult liver. Apical bulkheads accumulate upon bile flow obstruction in mouse models and patients with primary sclerosing cholangitis (PSC). Their loss under these conditions leads to abnormally dilated canaliculi, resembling liver cell rosettes described in other hepatic diseases. 3D reconstruction reveals that these structures are sections of cysts and tubes formed by hepatocytes. Mathematical modelling establishes that they positively correlate with canalicular pressure and occur in early PSC stages. Using primary hepatocytes and 3D organoids, we demonstrate that excessive canalicular pressure causes the loss of apical bulkheads and formation of rosettes. Our results suggest that apical bulkheads are a protective mechanism of hepatocytes against impaired bile flow, highlighting the role of canalicular pressure in liver diseases.

Authors: C. Mayer, S. Nehring, M. Kucken, U. Repnik, S. Seifert, A. Sljukic, J. Delpierre, H. Morales-Navarrete, S. Hinz, M. Brosch, B. Chung, T. Karlsen, M. Huch, Y. Kalaidzidis, L. Brusch, J. Hampe, C. Schafmayer, M. Zerial

Date Published: 31st Jul 2023

Publication Type: Journal

Abstract (Expand)

Variceal bleeding is a consequence of severe portal hypertension in patients with liver cirrhosis. Although the rate of bleeding has decreased over time, variceal bleeding in the presence of acute-on-chronic liver failure (ACLF) carries a high risk of treatment failure and short-term mortality. Treatment and/or removal of precipitating events (mainly bacterial infection and alcoholic hepatitis) and decrease of portal pressure may improve outcome of patients with acute decompensation or ACLF. Transjugular intrahepatic portosystemic shunts (TIPSs), especially in the preemptive situation, have been found to efficiently control bleeding, prevent rebleeding, and reduce short-term mortality. Therefore, TIPS placement should be considered as an option in the management of ACLF patients with variceal bleeding.

Authors: W. Gu, M. Kimmann, W. Laleman, M. Praktiknjo, J. Trebicka

Date Published: 17th Jul 2023

Publication Type: Journal

Abstract (Expand)

Endoscopy is and remains an indispensable tool in diagnosing and managing liver disease and its complications. Due to the progress in advanced endoscopy, endoscopy has become an alternative route for many surgical, percutaneous, and angiographic interventions, not only as a backup tool when conventional interventions fail but increasingly as a first-line choice. The term endo-hepatology refers to the integration of advanced endoscopy in the practice of hepatology. Endoscopy is key in the diagnosis and management of esophageal and gastric varices, portal hypertensive gastropathy, and gastric antral vascular ectasia. Endoscopic ultrasound (EUS) can be used for the evaluation of the liver parenchyma, liver lesions, and surrounding tissues and vessels, including targeted biopsy and complemented with new software functions. Moreover, EUS can guide portal pressure gradient measurement, and assess and help manage complications of portal hypertension. It is crucial that each present-day hepatologist is aware of the (rapidly increasing) full spectrum of diagnostic and therapeutic tools that exist within this field. In this comprehensive review, we would like to discuss the current endo-hepatology spectrum, as well as future directions for endoscopy in hepatology.

Authors: E. Vanderschueren, J. Trebicka, W. Laleman

Date Published: 17th Jul 2023

Publication Type: Journal

Abstract (Expand)

Chronic liver diseases such as nonalcoholic fatty liver disease (NAFLD) or viral hepatitis are characterized by persistent inflammation and subsequent liver fibrosis. Liver fibrosis critically determines long-term morbidity (for example, cirrhosis or liver cancer) and mortality in NAFLD and nonalcoholic steatohepatitis (NASH). Inflammation represents the concerted response of various hepatic cell types to hepatocellular death and inflammatory signals, which are related to intrahepatic injury pathways or extrahepatic mediators from the gut-liver axis and the circulation. Single-cell technologies have revealed the heterogeneity of immune cell activation concerning disease states and the spatial organization within the liver, including resident and recruited macrophages, neutrophils as mediators of tissue repair, auto-aggressive features of T cells as well as various innate lymphoid cell and unconventional T cell populations. Inflammatory responses drive the activation of hepatic stellate cells (HSCs), and HSC subsets, in turn, modulate immune mechanisms via chemokines and cytokines or transdifferentiate into matrix-producing myofibroblasts. Current advances in understanding the pathogenesis of inflammation and fibrosis in the liver, mainly focused on NAFLD or NASH owing to the high unmet medical need, have led to the identification of several therapeutic targets. In this Review, we summarize the inflammatory mediators and cells in the diseased liver, fibrogenic pathways and their therapeutic implications.

Authors: L. Hammerich, F. Tacke

Date Published: 3rd Jul 2023

Publication Type: Journal

Abstract (Expand)

Acute-on-chronic liver failure (ACLF) is a frequent complication in patients with liver cirrhosis that has high short-term mortality. It is characterized by acute decompensation (AD) of liver cirrhosis, intra- and extrahepatic organ failure, and severe systemic inflammation (SI). In the recent past, several studies have investigated the management of this group of patients. Identification and treatment of precipitants of decompensation and ACLF play an important role, and management of the respective intra- and extrahepatic organ failures is essential. However, no specific treatment for ACLF has been established to date, and the only curative treatment option currently available for these patients is liver transplantation (LT). It has been shown that ACLF patients are at severe risk of waitlist mortality, and post-LT survival rates are high, making ACLF patients suitable candidates for LT. However, only a limited number of patients are eligible for LT due to related contraindications such as uncontrolled infections. In this case, bridging strategies (e.g., extracorporeal organ support systems) are required. Further therapeutic approaches have recently been developed and evaluated. Thus, this review focuses on current management and potential future treatment options.

Authors: M. Kimmann, J. Trebicka

Date Published: 26th Jun 2023

Publication Type: Journal

Abstract

Not specified

Authors: Tobias Puengel, Frank Tacke

Date Published: 3rd Jun 2023

Publication Type: Journal

Abstract (Expand)

Targeting inflammatory mediators and related signaling pathways may offer a rational strategy for the treatment of cancer. The incorporation of metabolically stable, sterically demanding, and hydrophobicnd hydrophobic carboranes in dual cycloxygenase-2 (COX-2)/5-lipoxygenase (5-LO) inhibitors that are key enzymes in the biosynthesis of eicosanoids is a promising approach. The di-tert-butylphenol derivatives R-830, S-2474, KME-4, and E-5110 represent potent dual COX-2/5-LO inhibitors. The incorporation of p-carborane and further substitution of the p-position resulted in four carborane-based di-tert-butylphenol analogs that showed no or weak COX inhibition but high 5-LO inhibitory activities in vitro. Cell viability studies on five human cancer cell lines revealed that the p-carborane analogs R-830-Cb, S-2474-Cb, KME-4-Cb, and E-5110-Cb exhibited lower anticancer activity compared to the related di-tert-butylphenols. Interestingly, R-830-Cb did not affect the viability of primary cells and suppressed HCT116 cell proliferation more potently than its carbon-based R-830 counterpart. Considering all the advantages of boron cluster incorporation for enhancement of drug biostability, selectivity, and availability of drugs, R-830-Cb can be tested in further mechanistic and in vivo studies.

Authors: Sebastian Braun, Sanja Jelača, Markus Laube, Sven George, Bettina Hofmann, Peter Lönnecke, Dieter Steinhilber, Jens Pietzsch, Sanja Mijatović, Danijela Maksimović-Ivanić, Evamarie Hey-Hawkins

Date Published: 1st Jun 2023

Publication Type: Journal

Abstract (Expand)

Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most widely used therapeutics against pain, fever, and inflammation; additionally, antitumor properties are reported. NSAIDs reduce the synthesis of prostaglandins by inhibiting the cyclooxygenase (COX) isoforms COX-1 and COX-2. As nonselective inhibition is associated with off-target effects, strategies to achieve selectivity for the clinically preferred isoform COX-2 are of high interest. The modification of NSAIDs using carborane clusters as phenyl mimetics is reported to alter the selectivity profile through size exclusion. Inspired by these findings, isonimesulide and its carborane derivatives are prepared. The biological screening shows that the carborane containing compounds exhibit a stronger antitumor potential compared to nimesulide and isonimesulide. Furthermore, the replacement of the phenyl ring of isonimesulide with a carborane moiety resulted in a shift of the COX activity from nonactive to COX-active compounds.

Authors: Liridona Useini, Teodora Komazec, Markus Laube, Peter Lönnecke, Jonas Schädlich, Sanja Mijatović, Danijela Maksimović‐Ivanić, Jens Pietzsch, Evamarie Hey‐Hawkins

Date Published: 24th May 2023

Publication Type: Journal

Abstract (Expand)

The presence of inflammatory mediators in the tumor microenvironment, such as cytokines, growth factors or eicosanoids, indicate cancer-related inflammatory processes. Targeting these inflammatory mediators and related signal pathways may offer a rational strategy for the treatment of cancer. This study focuses on the incorporation of metabolically stable, sterically demanding, and hydrophobic dicarba-closo-dodecaboranes (carboranes) into dual cyclooxygenase-2 (COX-2)/5-lipoxygenase (5-LO) inhibitors that are key enzymes in the biosynthesis of eicosanoids. The di-tert-butylphenol derivative tebufelone represents a selective dual COX-2/5-LO inhibitor. The incorporation of meta- or para-carborane into the tebufelone scaffold resulted in eight carborane-based tebufelone analogs that show no COX inhibition but 5-LO inhibitory activity in vitro. Cell viability studies on HT29 colon adenocarcinoma cells revealed that the observed antiproliferative effect of the para-carborane analogs of tebufelone is enhanced by structural modifications that include chain elongation in combination with introduction of a methylene spacer resulting in higher anticancer activity compared to tebufelone. Hence, this strategy proved to be a promising approach to design potent 5-LO inhibitors with potential application as cytostatic agents.

Authors: Sebastian Braun, Svetlana Paskaš, Markus Laube, Sven George, Bettina Hofmann, Peter Lönnecke, Dieter Steinhilber, Jens Pietzsch, Sanja Mijatović, Danijela Maksimović‐Ivanić, Evamarie Hey‐Hawkins

Date Published: 24th May 2023

Publication Type: Journal

Abstract (Expand)

The biliary epithelial cells, also known as cholangiocytes, line the intra- and extrahepatic bile ducts, forming a barrier between intra- and extra-ductal environments. Cholangiocytes are mostly knowne mostly known to modulate bile composition and transportation. In hepatobiliary diseases, bile duct injury leads to drastic alterations in cholangiocyte phenotypes and their release of soluble mediators, which can vary depending on the original insult and cellular states (quiescence, senescence, or proliferation). The cholangiocyte-secreted cytokines (also termed cholangiokines) drive ductular cell proliferation, portal inflammation and fibrosis, and carcinogenesis. Hence, despite the previous consensus that cholangiocytes are bystanders in liver diseases, their diverse secretome plays critical roles in modulating the intrahepatic microenvironment. This review summarizes recent insights into the cholangiokines under both physiological and pathological conditions, especially as they occur during liver injury-regeneration, inflammation, fibrosis and malignant transformation processes.

Authors: Xiurong Cai, Frank Tacke, Adrien Guillot, Hanyang Liu

Date Published: 16th May 2023

Publication Type: Journal

Abstract (Expand)

BACKGROUND: Clinically significant portal hypertension (CSPH) drives cirrhosis-related complications (i.e. hepatic decompensation). Impaired nitric oxide (NO) bioavailability promotes sinusoidal vasoconstriction, which is the initial pathomechanism of CSPH development. Activation of soluble guanylyl cyclase (sGC), a key downstream effector of NO, facilitates sinusoidal vasodilation, which in turn may improve CSPH. Two phase II studies are being conducted to assess the efficacy of the NO-independent sGC activator BI 685,509 in patients with CSPH due to various cirrhosis aetiologies. METHODS: The 1366.0021 trial (NCT05161481) is a randomised, placebo-controlled, exploratory study that will assess BI 685,509 (moderate or high dose) for 24 weeks in patients with CSPH due to alcohol-related liver disease. The 1366.0029 trial (NCT05282121) is a randomised, open-label, parallel-group, exploratory study that will assess BI 685,509 (high dose) alone in patients with hepatitis B or C virus infection or non-alcoholic steatohepatitis (NASH) and in combination with 10 mg empagliflozin in patients with NASH and type 2 diabetes mellitus for 8 weeks. The 1366.0021 trial will enrol 105 patients, and the 1366.0029 trial will enrol 80 patients. In both studies, the primary endpoint is the change from baseline in hepatic venous pressure gradient (HVPG) until the end of treatment (24 or 8 weeks, respectively). Secondary endpoints include the proportion of patients with an HVPG reduction of > 10% from baseline, the development of decompensation events and the change from baseline in HVPG after 8 weeks in the 1366.0021 trial. In addition, the trials will assess changes in liver and spleen stiffness by transient elastography, changes in hepatic and renal function and the tolerability of BI 685,509. DISCUSSION: These trials will enable the assessment of the short-term (8 weeks) and longer-term (24 weeks) effects and safety of sGC activation by BI 685,509 on CSPH due to various cirrhosis aetiologies. The trials will use central readings of the diagnostic gold standard HVPG for the primary endpoint, as well as changes in established non-invasive biomarkers, such as liver and spleen stiffness. Ultimately, these trials will provide key information for developing future phase III trials. TRIAL REGISTRATION: 1366.0021: EudraCT no. 2021-001,285-38; ClinicalTrials.gov NCT05161481. Registered on 17 December 2021, https://www. CLINICALTRIALS: gov/ct2/show/NCT05161481 . 1366.0029: EudraCT no. 2021-005,171-40; ClinicalTrials.gov NCT05282121. Registered on 16 March 2022, https://www. CLINICALTRIALS: gov/ct2/show/NCT05282121 .

Authors: T. Reiberger, A. Berzigotti, J. Trebicka, J. Ertle, I. Gashaw, R. Swallow, A. Tomisser

Date Published: 24th Apr 2023

Publication Type: Journal

Abstract (Expand)

Hepatocytes grow their apical surfaces anisotropically to generate a 3D network of bile canaliculi (BC). BC elongation is ensured by apical bulkheads, membrane extensions that traverse the lumen and the lumen and connect juxtaposed hepatocytes. We hypothesize that apical bulkheads are mechanical elements that shape the BC lumen in liver development but also counteract elevated biliary pressure. Here, by resolving their structure using STED microscopy, we found that they are sealed by tight junction loops, connected by adherens junctions, and contain contractile actomyosin, characteristics of mechanical function. Apical bulkheads persist at high pressure upon microinjection of fluid into the BC lumen, and laser ablation demonstrated that they are under tension. A mechanical model based on ablation results revealed that apical bulkheads double the pressure BC can hold. Apical bulkhead frequency anticorrelates with BC connectivity during mouse liver development, consistent with predicted changes in biliary pressure. Our findings demonstrate that apical bulkheads are load-bearing mechanical elements that could protect the BC network against elevated pressure.

Authors: Maarten P. Bebelman, Matthew J. Bovyn, Carlotta M. Mayer, Julien Delpierre, Ronald Naumann, Nuno P. Martins, Alf Honigmann, Yannis Kalaidzidis, Pierre A. Haas, Marino Zerial

Date Published: 3rd Apr 2023

Publication Type: Journal

Abstract (Expand)

Functional interaction between cancer cells and the surrounding microenvironment is still not sufficiently understood, which motivates the tremendous interest for the development of numerous in vitro tumor models. Diverse parameters, for example, transport of nutrients and metabolites, availability of space in the confinement, etc. make an impact on the size, shape, and metabolism of the tumoroids. We demonstrate the fluidics-based low-cost methodology to reproducibly generate the alginate and alginate-chitosan microcapsules and apply it to grow human hepatoma (HepG2) spheroids of different dimensions and geometries. Focusing specifically on the composition and thickness of the hydrogel shell, permeability of the microcapsules was selectively tuned. The diffusion of the selected benchmark molecules through the shell has been systematically investigated using both, experiments and simulations, which is essential to ensure efficient mass transfer and/or filtering of the biochemical species. Metabolic activity of spheroids in microcapsules was confirmed by tracking the turnover of testosterone to androstenedione with chromatography studies in a metabolic assay. Depending on available space, phenotypically different 3D cell assemblies have been observed inside the capsules, varying in the tightness of cell aggregations and their shapes. Conclusively, we believe that our system with the facile tuning of the shell thickness and permeability, represents a promising platform for studying the formation of cancer spheroids and their functional interaction with the surrounding microenvironment.

Authors: Xuan Peng, Željko Janićijević, Sandy Lemm, Markus Laube, Jens Pietzsch, Michael Bachmann, Larysa Baraban

Date Published: 27th Mar 2023

Publication Type: Journal

Abstract (Expand)

Chemokines or chemotactic cytokines play a pivotal role in the immune pathogenesis of liver cirrhosis and hepatocellular carcinoma (HCC). Nevertheless, comprehensive cytokine profiling data across different etiologies of liver diseases are lacking. Chemokines might serve as diagnostic and prognostic biomarkers. In our study, we analyzed serum concentrations of 12 inflammation-related chemokines in a cohort of patients (n = 222) with cirrhosis of different etiologies and/or HCC. We compared 97 patients with cirrhosis and treatment-naive HCC to the chemokine profile of 125 patients with cirrhosis but confirmed absence of HCC. Nine out of twelve chemokines were significantly elevated in sera of cirrhotic patients with HCC compared to HCC-free cirrhosis controls (CCL2, CCL11, CCL17, CCL20, CXCL1, CXCL5, CXCL9, CXCL10, CXCL11). Among those, CXCL5, CXCL9, CXCL10, and CXCL11 were significantly elevated in patients with early HCC according to the Barcelona Clinic Liver Cancer (BCLC) stages 0/A compared to cirrhotic controls without HCC. In patients with HCC, CXCL5 serum levels were associated with tumor progression, and levels of CCL20 and CXCL8 with macrovascular invasion. Importantly, our study identified CXCL5, CXCL9, and CXCL10 as universal HCC markers, independent from underlying etiology of cirrhosis. In conclusion, regardless of the underlying liver disease, patients with cirrhosis share an HCC-specific chemokine profile. CXCL5 may serve as a diagnostic biomarker in cirrhotic patients for early HCC detection as well as for tumor progression.

Authors: A. Laschtowitz, J. Lambrecht, T. Puengel, F. Tacke, R. Mohr

Date Published: 10th Mar 2023

Publication Type: Journal

Abstract (Expand)

Motivation Biological tissues are dynamic and highly organized. Multi-scale models are helpful tools to analyze and understand the processes determining tissue dynamics. These models usually depend on parameters that need to be inferred from experimental data to achieve a quantitative understanding, to predict the response to perturbations, and to evaluate competing hypotheses. However, even advanced inference approaches such as Approximate Bayesian Computation (ABC) are difficult to apply due to the computational complexity of the simulation of multi-scale models. Thus, there is a need for a scalable pipeline for modeling, simulating, and parameterizing multi-scale models of multi-cellular processes. Results Here, we present FitMultiCell, a computationally efficient and user-friendly open-source pipeline that can handle the full workflow of modeling, simulating, and parameterizing for multi-scale models of multi-cellular processes. The pipeline is modular and integrates the modeling and simulation tool Morpheus and the statistical inference tool pyABC. The easy integration of high-performance infrastructure allows to scale to computationally expensive problems. The introduction of a novel standard for the formulation of parameter inference problems for multi-scale models additionally ensures reproducibility and reusability. By applying the pipeline to multiple biological problems, we demonstrate its broad applicability, which will benefit in particular image-based systems biology. Availability FitMultiCell is available open-source at https://gitlab.com/fitmulticell/fit Supplementary data are available at https://doi.org/10.5281/zenodo.7646287

Authors: Emad Alamoudi, Yannik Schälte, Robert Müller, Jörn Starruß, Nils Bundgaard, Frederik Graw, Lutz Brusch, Jan Hasenauer

Date Published: 21st Feb 2023

Publication Type: Misc

Abstract (Expand)

Multi-target drugs (MTDs) are emerging alternatives to combination therapies. Since both histone deacetylases (HDACs) and cyclooxygenase-2 (COX-2) are known to be overexpressed in several cancer types, we herein report the design, synthesis, and biological evaluation of a library of dual HDAC-COX inhibitors. The designed compounds were synthesized via an efficient parallel synthesis approach using preloaded solid-phase resins. Biological in vitro assays demonstrated that several of the synthesized compounds possess pronounced inhibitory activities against HDAC and COX isoforms. The membrane permeability and inhibition of cellular HDAC activity of selected compounds were confirmed by whole-cell HDAC inhibition assays and immunoblot experiments. The most promising dual inhibitors, C3 and C4, evoked antiproliferative effects in the low micromolar concentration range and caused a significant increase in apoptotic cells. In contrast to previous reports, the simultaneous inhibition of HDAC and COX activity by dual HDAC-COX inhibitors or combination treatments with vorinostat and celecoxib did not result in additive or synergistic anticancer activities.

Authors: Luisa M. Bachmann, Maria Hanl, Felix Feller, Laura Sinatra, Andrea Schöler, Jens Pietzsch, Markus Laube, Finn K. Hansen

Date Published: 1st Feb 2023

Publication Type: Journal

Abstract (Expand)

Objective Hepatocellular carcinoma (HCC) often develops in patients with alcohol-related cirrhosis at an annual risk of up to 2.5%. Some host genetic risk factors have been identified but do not accounttors have been identified but do not account for the majority of the variance in occurrence. This study aimed to identify novel susceptibility loci for the development of HCC in people with alcohol related cirrhosis. Design Patients with alcohol-related cirrhosis and HCC (cases: n=1214) and controls without HCC (n=1866), recruited from Germany, Austria, Switzerland, Italy and the UK, were included in a two-stage genome-wide association study using a case–control design. A validation cohort of 1520 people misusing alcohol but with no evidence of liver disease was included to control for possible association effects with alcohol misuse. Genotyping was performed using the InfiniumGlobal Screening Array (V.24v2, Illumina) and the OmniExpress Array (V.24v1-0a, Illumina). Results Associations with variants rs738409 in PNPLA3 and rs58542926 in TM6SF2 previously associated with an increased risk of HCC in patients with alcohol-related cirrhosis were confirmed at genome-wide significance. A novel locus rs2242652(A) in TERT (telomerase reverse transcriptase) was also associated with a decreased risk of HCC, in the combined meta-analysis, at genome-wide significance (p=6.41×10 −9 , OR=0.61 (95% CI 0.52 to 0.70). This protective association remained significant after correction for sex, age, body mass index and type 2 diabetes (p=7.94×10 −5 , OR=0.63 (95% CI 0.50 to 0.79). Carriage of rs2242652(A) in TERT was associated with an increased leucocyte telomere length (p=2.12×10 −44 ). Conclusion This study identifies rs2242652 in TERT as a novel protective factor for HCC in patients with alcohol-related cirrhosis.

Authors: Stephan Buch, Hamish Innes, Philipp Ludwig Lutz, Hans Dieter Nischalke, Jens U Marquardt, Janett Fischer, Karl Heinz Weiss, Jonas Rosendahl, Astrid Marot, Marcin Krawczyk, Markus Casper, Frank Lammert, Florian Eyer, Arndt Vogel, Silke Marhenke, Johann von Felden, Rohini Sharma, Stephen Rahul Atkinson, Andrew McQuillin, Jacob Nattermann, Clemens Schafmayer, Andre Franke, Christian Strassburg, Marcella Rietschel, Heidi Altmann, Stefan Sulk, Veera Raghavan Thangapandi, Mario Brosch, Carolin Lackner, Rudolf E Stauber, Ali Canbay, Alexander Link, Thomas Reiberger, Mattias Mandorfer, Georg Semmler, Bernhard Scheiner, Christian Datz, Stefano Romeo, Stefano Ginanni Corradini, William Lucien Irving, Joanne R Morling, Indra Neil Guha, Eleanor Barnes, M Azim Ansari, Jocelyn Quistrebert, Luca Valenti, Sascha A Müller, Marsha Yvonne Morgan, Jean-François Dufour, Jonel Trebicka, Thomas Berg, Pierre Deltenre, Sebastian Mueller, Jochen Hampe, Felix Stickel

Date Published: 5th Jan 2023

Publication Type: Journal

Abstract (Expand)

Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a rare primary liver cancer which displays clinicopathologic features of both hepatocellular (HCC) and cholangiocellular carcinoma (CCA). Theoma (CCA). The similarity to HCC and CCA makes the diagnostic workup particularly challenging. Alpha-fetoprotein (AFP) and carbohydrate antigen 19-9 (CA 19-9) are blood tumour markers related with HCC and CCA, respectively. They can be used as diagnostic markers in cHCC-CCA as well, albeit with low sensitivity. The imaging features of cHCC-CCA overlap with those of HCC and CCA, dependent on the predominant histopathological component. Using the Liver Imaging and Reporting Data System (LI-RADS), as many as half of cHCC-CCAs may be falsely categorised as HCC. This is especially relevant since the diagnosis of HCC may be made without histopathological confirmation in certain cases. Thus, in instances of diagnostic uncertainty (e.g., simultaneous radiological HCC and CCA features, elevation of CA 19-9 and AFP, HCC imaging features and elevated CA 19-9, and vice versa) multiple image-guided core needle biopsies should be performed and analysed by an experienced pathologist. Recent advances in the molecular characterisation of cHCC-CCA, innovative diagnostic approaches (e.g., liquid biopsies) and methods to analyse multiple data points (e.g., clinical, radiological, laboratory, molecular, histopathological features) in an all-encompassing way (e.g., by using artificial intelligence) might help to address some of the existing diagnostic challenges.

Authors: Johannes Eschrich, Zuzanna Kobus, Dominik Geisel, Sebastian Halskov, Florian Roßner, Christoph Roderburg, Raphael Mohr, Frank Tacke

Date Published: 2023

Publication Type: Journal

Abstract

Not specified

Authors: Adrien Guillot, Marc Winkler, Milessa Silva Afonso, Abhishek Aggarwal, David Lopez, Hilmar Berger, Marlene S. Kohlhepp, Hanyang Liu, Burcin Özdirik, Johannes Eschrich, Jing Ma, Moritz Peiseler, Felix Heymann, Swetha Pendem, Sangeetha Mahadevan, Bin Gao, Lauri Diehl, Ruchi Gupta, Frank Tacke

Date Published: 2023

Publication Type: Journal

Abstract

Not specified

Authors: Felix Heymann, Jana C. Mossanen, Moritz Peiseler, Patricia M. Niemietz, Bruna Araujo David, Oliver Krenkel, Anke Liepelt, Matheus Batista Carneiro, Marlene S. Kohlhepp, Paul Kubes, Frank Tacke

Date Published: 2023

Publication Type: Journal

Abstract

Not specified

Authors: Savneet Kaur, Srivatsan Kidambi, Martí Ortega-Ribera, Le Thi Thanh Thuy, Natalia Nieto, Victoria C. Cogger, Wei-Fen Xie, Frank Tacke, Jordi Gracia-Sancho

Date Published: 2023

Publication Type: Journal

Abstract

Not specified

Authors: Herbert Tilg, Timon E. Adolph, Frank Tacke

Date Published: 2023

Publication Type: Journal

Abstract

Not specified

Authors: Joscha Vonderlin, Triantafyllos Chavakis, Michael Sieweke, Frank Tacke

Date Published: 2023

Publication Type: Journal

Abstract (Expand)

The characterization of novel radiotracers toward their metabolic stability is an essential part of their development. While in vitro methods such as liver microsome assays or ex vivo blood or tissue samples provide information on overall stability, little or no information is obtained on cytochrome P450 (CYP) enzyme and isoform-specific contribution to the metabolic fate of individual radiotracers. Herein, we investigated recently established CYP-overexpressing hepatoblastoma cell lines (HepG2) for their suitability to study the metabolic stability of radiotracers in general and to gain insight into CYP isoform specificity. Wildtype HepG2 and CYP1A2-, CYP2C19-, and CYP3A4-overexpressing HepG2 cells were incubated with radiotracers, and metabolic turnover was analyzed. The optimized protocol, covering cell seeding in 96-well plates and analysis of supernatant by radio thin-layer-chromatography for higher throughput, was transferred to the evaluation of three (18)F-labeled celecoxib-derived cyclooxygenase-2 inhibitors (coxibs). These investigations revealed time-dependent degradation of the intact radiotracers, as well as CYP isoform- and substrate-specific differences in their metabolic profiles. HepG2 CYP2C19 proved to be the cell line showing the highest metabolic turnover for each radiotracer studied here. Comparison with human and murine liver microsome assays showed good agreement with the human metabolite profile obtained by the HepG2 cell lines. Therefore, CYP-overexpressing HepG2 cells provide a good complement for assessing the metabolic stability of radiotracers and allow the analysis of the CYP isoform-specific contribution to the overall radiotracer metabolism.

Authors: S. Lemm, S. Kohler, R. Wodtke, F. Jung, J. H. Kupper, J. Pietzsch, M. Laube

Date Published: 7th Aug 2022

Publication Type: Journal

Abstract (Expand)

The prevalence of nonalcoholic fatty liver disease (NAFLD), recently also re-defined as metabolic dysfunction associated fatty liver disease (MAFLD), is rapidly increasing, affecting ~25% of the world population. MALFD/NAFLD represents a spectrum of liver pathologies including the more benign hepatic steatosis and the more advanced non-alcoholic steatohepatitis (NASH). NASH is associated with enhanced risk for liver fibrosis and progression to cirrhosis and hepatocellular carcinoma. Hepatic stellate cells (HSC) activation underlies NASH-related fibrosis. Here, we discuss the profibrogenic pathways, which lead to HSC activation and fibrogenesis, with a particular focus on the intercellular hepatocyte-HSC and macrophage-HSC crosstalk.

Authors: P. Subramanian, J. Hampe, F. Tacke, T. Chavakis

Date Published: 23rd Jun 2022

Publication Type: Journal

Abstract (Expand)

Physiological liver cell replacement is central to maintaining the organ’s high metabolic activity, although its characteristics are difficult to study in humans. Using retrospective radiocarbon (14C) birth dating of cells, we report that human hepatocytes show continuous and lifelong turnover, allowing the liver to remain a young organ (average age <3 years). Hepatocyte renewal is highly dependent on the ploidy level. Diploid hepatocytes show more than 7-fold higher annual birth rates than polyploid hepatocytes. These observations support the view that physiological liver cell renewal in humans is mainly dependent on diploid hepatocytes, whereas polyploid cells are compromised in their ability to divide. Moreover, cellular transitions between diploid and polyploid hepatocytes are limited under homeostatic conditions. With these findings, we present an integrated model of homeostatic liver cell generation in humans that provides fundamental insights into liver cell turnover dynamics.

Authors: Paula Heinke, Fabian Rost, Julian Rode, Palina Trus, Irina Simonova, Enikő Lázár, Joshua Feddema, Thilo Welsch, Kanar Alkass, Mehran Salehpour, Andrea Zimmermann, Daniel Seehofer, Göran Possnert, Georg Damm, Henrik Druid, Lutz Brusch, Olaf Bergmann

Date Published: 1st Jun 2022

Publication Type: Journal

Abstract (Expand)

The Hedgehog signaling pathway regulates many processes during embryogenesis and the homeostasis of adult organs. Recent data suggest that central metabolic processes and signaling cascades in the livers in the liver are controlled by the Hedgehog pathway and that changes in hepatic Hedgehog activity also affect peripheral tissues, such as the reproductive organs in females. Here, we show that hepatocyte-specific deletion of the Hedgehog pathway is associated with the dramatic expansion of adipose tissue in mice, the overall phenotype of which does not correspond to the classical outcome of insulin resistance-associated diabetes type 2 obesity. Rather, we show that alterations in the Hedgehog signaling pathway in the liver lead to a metabolic phenotype that is resembling metabolically healthy obesity. Mechanistically, we identified an indirect influence on the hepatic secretion of the fibroblast growth factor 21, which is regulated by a series of signaling cascades that are directly transcriptionally linked to the activity of the Hedgehog transcription factor GLI1. The results of this study impressively show that the metabolic balance of the entire organism is maintained via the activity of morphogenic signaling pathways, such as the Hedgehog cascade. Obviously, several pathways are orchestrated to facilitate liver metabolic status to peripheral organs, such as adipose tissue.

Authors: Fritzi Ott, Christiane Körner, Kim Werner, Martin Gericke, Ines Liebscher, Donald Lobsien, Silvia Radrezza, Andrej Shevchenko, Ute Hofmann, Jürgen Kratzsch, Rolf Gebhardt, Thomas Berg, Madlen Matz-Soja

Date Published: 1st May 2022

Publication Type: Journal

Abstract (Expand)

The host genetic background for hepatocellular carcinoma (HCC) is incompletely understood. We aimed to determine if four germline genetic polymorphisms, rs429358 in apolipoprotein E ( APOE ), rs2642438rotein E ( APOE ), rs2642438 in mitochondrial amidoxime reducing component 1 ( MARC1 ), rs2792751 in glycerol‐3‐phosphate acyltransferase ( GPAM ), and rs187429064 in transmembrane 6 superfamily member 2 ( TM6SF2 ), previously associated with progressive alcohol‐related and nonalcoholic fatty liver disease, are also associated with HCC. Four HCC case‐control data sets were constructed, including two mixed etiology data sets (UK Biobank and FinnGen); one hepatitis C virus (HCV) cohort (STOP‐HCV), and one alcohol‐related HCC cohort (Dresden HCC). The frequency of each variant was compared between HCC cases and cirrhosis controls (i.e., patients with cirrhosis without HCC). Population controls were also considered. Odds ratios (ORs) associations were calculated using logistic regression, adjusting for age, sex, and principal components of genetic ancestry. Fixed‐effect meta‐analysis was used to determine the pooled effect size across all data sets. Across four case‐control data sets, 2,070 HCC cases, 4,121 cirrhosis controls, and 525,779 population controls were included. The rs429358:C allele ( APOE ) was significantly less frequent in HCC cases versus cirrhosis controls (OR, 0.71; 95% confidence interval [CI], 0.61‐0.84; P  = 2.9 × 10 −5 ). Rs187429064:G ( TM6SF2 ) was significantly more common in HCC cases versus cirrhosis controls and exhibited the strongest effect size (OR, 2.03; 95% CI, 1.45‐2.86; P  = 3.1 × 10 −6 ). In contrast, rs2792751:T ( GPAM ) was not associated with HCC (OR, 1.01; 95% CI, 0.90‐1.13; P  = 0.89), whereas rs2642438:A ( MARC1 ) narrowly missed statistical significance (OR, 0.91; 95% CI, 0.84‐1.00; P  = 0.043). Conclusion: This study associates carriage of rs429358:C ( APOE ) with a reduced risk of HCC in patients with cirrhosis. Conversely, carriage of rs187429064:G in TM6SF2 is associated with an increased risk of HCC in patients with cirrhosis.

Authors: Hamish Innes, Hans Dieter Nischalke, Indra Neil Guha, Karl Heinz Weiss, Will Irving, Daniel Gotthardt, Eleanor Barnes, Janett Fischer, M. Azim Ansari, Jonas Rosendahl, Shang‐Kuan Lin, Astrid Marot, Vincent Pedergnana, Markus Casper, Jennifer Benselin, Frank Lammert, John McLauchlan, Philip L. Lutz, Victoria Hamill, Sebastian Mueller, Joanne R. Morling, Georg Semmler, Florian Eyer, Johann von Felden, Alexander Link, Arndt Vogel, Jens U. Marquardt, Stefan Sulk, Jonel Trebicka, Luca Valenti, Christian Datz, Thomas Reiberger, Clemens Schafmayer, Thomas Berg, Pierre Deltenre, Jochen Hampe, Felix Stickel, Stephan Buch

Date Published: 2022

Publication Type: Journal

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH