Publications

Abstract (Expand)

BACKGROUND & AIMS: Activation of transforming growth factor beta (TGFB) promotes liver fibrosis by activating hepatic stellate cells (HSCs), but the mechanism of TGFB activation are not clear. We investigated the role of extracellular matrix protein 1 (ECM1), which interacts with extracellular and structural proteins, in TGFB activation in livers of mice. METHODS: We performed studies with e C57BL/6J mice (controls), ECM1-knockout (ECM1-KO) mice, and mice with hepatocyte-specific knockout of EMC1 (ECM1Deltahep). ECM1 or soluble TGFB receptor 2 (TGFBR2) were expressed in livers of mice following injection of an adeno-associated virus vector. Liver fibrosis was induced by carbon tetrachloride (CCl4) administration. Livers were collected from mice and analyzed by histology, immunohistochemistry, in situ hybridization, and immunofluorescence analyses. Hepatocytes and HSCs were isolated from livers of mice and incubated with ECM1; production of cytokines and activation of reporter genes were quantified. Liver tissues from patients with viral or alcohol-induced hepatitis (with different stages of fibrosis) and individuals with healthy liver were analyzed by immunohistochemistry and in situ hybridization. RESULTS: ECM1-KO mice spontaneously developed liver fibrosis and died by 2 months of age without significant hepatocyte damage or inflammation. In liver tissues of mice, we found that ECM1 stabilized extracellular matrix-deposited TGFB in its inactive form by interacting with alphav integrins to prevent activation of HSCs. In liver tissues from patients and in mice with CCl4-induced liver fibrosis, we found an inverse correlation between level of ECM1 and severity of fibrosis. CCl4-induced liver fibrosis was accelerated in ECM1Deltahep mice compared with control mice. Hepatocytes produced the highest levels of ECM1 in livers of mice. Ectopic expression of ECM1 or soluble TGFBR2 in liver prevented fibrogenesis in ECM1-KO mice and prolonged their survival. Ectopic expression of ECM1 in liver also reduced the severity of CCl4-induced fibrosis in mice. CONCLUSIONS: ECM1, produced by hepatocytes, inhibits activation of TGFB and its activation of HSCs to prevent fibrogenesis in mouse liver. Strategies to increase levels of ECM1 in liver might be developed for treatment of fibrosis.

Authors: W. Fan, T. Liu, W. Chen, Seddik Hammad, T. Longerich, Y. Fu, N. Li, Y. He, C. Liu, Y. Zhang, Q. Lian, Jieling Zhao, C. Yan, L. Li, C. Yi, Z. Ling, L. Ma, Jieling Zhao, H. Xu, P. Wang, M. Cong, H. You, Z. Liu, Y. Wang, J. Chen, D. Li, L. Hui, Steven Dooley, J. Hou, J. Jia, B. Sun

Date Published: 27th Jul 2019

Journal: Gastroenterology

Abstract

Not specified

Authors: Ersin Karatayli, Rabea A. Hall, Susanne Weber, Steven Dooley, Frank Lammert

Date Published: 1st Feb 2019

Journal: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease

Abstract

Not specified

Authors: Steven Dooley, W Fan, Seddik Hammad, K Gould, T Longerich, T Liu, W Chen, C Liu, J Hou, J Jia, B Sun

Date Published: 2019

Journal: Not specified

Abstract

Not specified

Authors: Seddik Hammad, W Fan, T Liu, W Chen, K Gould, T Longerich, I Haußer-Siller, J Hou, J Jia, B Sun, Steven Dooley

Date Published: 2019

Journal: Not specified

Abstract

Not specified

Authors: Haristi Gaitantzi, Christoph Meyer, Pia Rakoczy, Maria Thomas, Kristin Wahl, Franziska Wandrer, Heike Bantel, Hamed Alborzinia, Stefan Wölfl, Sabrina Ehnert, Andreas Nüssler, Ina Bergheim, Loredana Ciuclan, Matthias Ebert, Katja Breitkopf-Heinlein, Steven Dooley

Date Published: 1st Feb 2018

Journal: Cell Death Dis

Abstract (Expand)

Alcohol abuse is a global health problem causing a substantial fraction of chronic liver diseases. Abundant TGF-beta-a potent pro-fibrogenic cytokine-leads to disease progression. Our aim was to elucidate the crosstalk of TGF-beta and alcohol on hepatocytes. Primary murine hepatocytes were challenged with ethanol and TGF-beta and cell fate was determined. Fluidigm RNA analyses revealed transcriptional effects that regulate survival and apoptosis. Mechanistic insights were derived from enzyme/pathway inhibition experiments and modulation of oxidative stress levels. To substantiate findings, animal model specimens and human liver tissue cultures were investigated. RESULTS: On its own, ethanol had no effect on hepatocyte apoptosis, whereas TGF-beta increased cell death. Combined treatment led to massive hepatocyte apoptosis, which could also be recapitulated in human HCC liver tissue treated ex vivo. Alcohol boosted the TGF-beta pro-apoptotic gene signature. The underlying mechanism of pathway crosstalk involves SMAD and non-SMAD/AKT signaling. Blunting CYP2E1 and ADH activities did not prevent this effect, implying that it was not a consequence of alcohol metabolism. In line with this, the ethanol metabolite acetaldehyde did not mimic the effect and glutathione supplementation did not prevent the super-induction of cell death. In contrast, blocking GSK-3beta activity, a downstream mediator of AKT signaling, rescued the strong apoptotic response triggered by ethanol and TGF-beta. This study provides novel information on the crosstalk between ethanol and TGF-beta. We give evidence that ethanol directly leads to a boost of TGF-beta's pro-apoptotic function in hepatocytes, which may have implications for patients with chronic alcoholic liver disease.

Authors: H. Gaitantzi, C. Meyer, P. Rakoczy, M. Thomas, K. Wahl, F. Wandrer, H. Bantel, H. Alborzinia, S. Wolfl, S. Ehnert, A. Nussler, I. Bergheim, L. Ciuclan, M. Ebert, K. Breitkopf-Heinlein, Steven Dooley

Date Published: 21st Jan 2018

Journal: Cell Death Dis

Abstract (Expand)

Liver myofibroblasts (MFB) are crucial mediators of extracellular matrix (ECM) deposition in liver fibrosis. They arise mainly from hepatic stellate cells (HSCs) upon a process termed "activation." To a lesser extent, and depending on the cause of liver damage, portal fibroblasts, mesothelial cells, and fibrocytes may also contribute to the MFB population. Targeting MFB to reduce liver fibrosis is currently an area of intense research. Unfortunately, a clog in the wheel of antifibrotic therapies is the fact that although MFB are known to mediate scar formation, and participate in liver inflammatory response, many of their molecular portraits are currently unknown. In this review, we discuss recent understanding of MFB in health and diseases, focusing specifically on three evolving research fields: metabolism, autophagy, and epigenetics. We have emphasized on therapeutic prospects where applicable and mentioned techniques for use in MFB studies. Subsequently, we highlighted uncharted territories in MFB research to help direct future efforts aimed at bridging gaps in current knowledge.

Authors: Z. C. Nwosu, H. Alborzinia, S. Wolfl, Steven Dooley, Y. Liu

Date Published: 18th Jun 2016

Journal: Front Physiol

Powered by
(v.1.9.0)
Copyright © 2008 - 2019 The University of Manchester and HITS gGmbH