Publications

What is a Publication?
81 Publications visible to you, out of a total of 81

Abstract (Expand)

Liver fibrosis is an advanced liver disease condition, which could progress to cirrhosis and hepatocellular carcinoma. To date, there is no direct approved antifibrotic therapy, and current treatment is mainly the removal of the causative factor. Transforming growth factor (TGF)-beta is a master profibrogenic cytokine and a promising target to treat fibrosis. However, TGF-beta has broad biological functions and its inhibition induces non-desirable side effects, which override therapeutic benefits. Therefore, understanding the pleiotropic effects of TGF-beta and its upstream and downstream regulatory mechanisms will help to design better TGF-beta based therapeutics. Here, we summarize recent discoveries and milestones on the TGF-beta signaling pathway related to liver fibrosis and hepatic stellate cell (HSC) activation, emphasizing research of the last five years. This comprises impact of TGF-beta on liver fibrogenesis related biological processes, such as senescence, metabolism, reactive oxygen species generation, epigenetics, circadian rhythm, epithelial mesenchymal transition, and endothelial-mesenchymal transition. We also describe the influence of the microenvironment on the response of HSC to TGF-beta. Finally, we discuss new approaches to target the TGF-beta pathway, name current clinical trials, and explain promises and drawbacks that deserve to be adequately addressed.

Authors: B. Dewidar, C. Meyer, S. Dooley, A. N. Meindl-Beinker

Date Published: 11th Nov 2019

Publication Type: Not specified

Abstract

Not specified

Authors: Anne Dropmann, Steven Dooley, Bedair Dewidar, Seddik Hammad, Tatjana Dediulia, Julia Werle, Vanessa Hartwig, Shahrouz Ghafoory, Stefan Woelfl, Hanna Korhonen, Michel Janicot, Katja Wosikowski, Timo Itzel, Andreas Teufel, Detlef Schuppan, Ana Stojanovic, Adelheid Cerwenka, Stefanie Nittka, Albrecht Piiper, Timo Gaiser, Naiara Beraza, Malgorzata Milkiewicz, Piotr Milkiewicz, John G Brain, David E J Jones, Thomas S Weiss, Ulrich M Zanger, Matthias Ebert, Nadja M Meindl-Beinker

Date Published: 28th Jan 2020

Publication Type: Not specified

Abstract (Expand)

Abstract Transforming growth factor (TGF)‐β and toll‐like receptors (TLRs) have been shown to independently modulate the proliferation of hepatocellular carcinoma (HCC). Since a direct cross‐talk between (HCC). Since a direct cross‐talk between these two signalling pathways in HCC has not been clearly described before, we aimed here to explore the possibility of such interaction. A human HCC tissue array ( n  = 20 vs. four control samples), human HCC samples ( n  = 10) and steatohepatitis‐driven murine HCC samples (control, NASH and HCC; n  = 6/group) were immunostained for TGFβR1, pSMAD2, TRAF6, IRAK1 and PCNA. The results were confirmed by immunoblotting. Effects of constant activation of the SMAD pathway by constitutive expression of ALK5 or knockdown of mediators of TLR signalling, IRAK1 and MyD88, on HCC proliferation, were investigated in the HCC cell line (HUH‐7) after treatment with TGFβ1 cytokine or TGFβR1 kinase inhibitor (LY2157299) using PCNA and MTS assay. TGFβR1 expression is decreased in human and murine HCC and associated with downregulated pSMAD2, but increased IRAK1, TRAF6 and PCNA staining. TGFβR1 kinase inhibition abolished the cytostatic effects of TGFβ1 and led to the induction of IRAK1, pIRAK1 and elevated mRNA levels of TLR‐9. Overexpression of ALK5 and knockdown of MyD88 or IRAK1 augmented the cytostatic effects of TGFβ1 on HUH‐7. In another epithelial HCC cell line, that is, HepG2, TGFβR1 kinase inhibitor similarly elevated cellular proliferation. There is a balance between the canonical SMAD‐driven tumour‐suppressing arm and the non‐canonical tumour‐promoting arm of TGFβ signalling. Disruption of this balance, by inhibition of the canonical pathway, induces HCC proliferation through TLR signalling.

Authors: Fatma El Zahraa Ammar Mohamed, Bedair Dewidar, Tao Lin, Matthias P. Ebert, Steven Dooley, Nadja M. Meindl‐Beinker, Seddik Hammad

Date Published: 8th Feb 2024

Publication Type: Journal

Abstract

Not specified

Authors: Sai Wang, Frederik Link, Mei Han, Roohi Chaudhary, Anastasia Asimakopoulos, Roman Liebe, Ye Yao, Seddik Hammad, Anne Dropmann, Marinela Krizanac, Claudia Rubie, Laura Kim Feiner, Matthias Glanemann, Matthias P.A. Ebert, Ralf Weiskirchen, Yoav I. Henis, Marcelo Ehrlich, Steven Dooley

Date Published: 2024

Publication Type: Journal

Abstract (Expand)

Abstract The human liver has a remarkable capacity to regenerate and thus compensate over decades for fibrosis caused by toxic chemicals, drugs, alcohol, or malnutrition. To date, no protective mechanismsrition. To date, no protective mechanisms have been identified that help the liver tolerate these repeated injuries. In this study, we revealed dysregulation of lipid metabolism and mild inflammation as protective mechanisms by studying longitudinal multi-omic measurements of liver fibrosis induced by repeated CCl 4 injections in mice ( n  = 45). Based on comprehensive proteomics, transcriptomics, blood- and tissue-level profiling, we uncovered three phases of early disease development—initiation, progression, and tolerance. Using novel multi-omic network analysis, we identified multi-level mechanisms that are significantly dysregulated in the injury-tolerant response. Public data analysis shows that these profiles are altered in human liver diseases, including fibrosis and early cirrhosis stages. Our findings mark the beginning of the tolerance phase as the critical switching point in liver response to repetitive toxic doses. After fostering extracellular matrix accumulation as an acute response, we observe a deposition of tiny lipid droplets in hepatocytes only in the Tolerant phase. Our comprehensive study shows that lipid metabolism and mild inflammation may serve as biomarkers and are putative functional requirements to resist further disease progression.

Authors: Seddik Hammad, Christoph Ogris, Amnah Othman, Pia Erdoesi, Wolfgang Schmidt-Heck, Ina Biermayer, Barbara Helm, Yan Gao, Weronika Piorońska, Christian H. Holland, Lorenza A. D’Alessandro, Carolina de la Torre, Carsten Sticht, Sherin Al Aoua, Fabian J. Theis, Heike Bantel, Matthias P. Ebert, Ursula Klingmüller, Jan G. Hengstler, Steven Dooley, Nikola S. Mueller

Date Published: 1st Jul 2023

Publication Type: Journal

Abstract

Not specified

Authors: Christian H. Holland, Ricardo O. Ramirez Flores, Maiju Myllys, Reham Hassan, Karolina Edlund, Ute Hofmann, Rosemarie Marchan, Cristina Cadenas, Jörg Reinders, Stefan Hoehme, Abdel‐latif Seddek, Steven Dooley, Verena Keitel, Patricio Godoy, Brigitte Begher‐Tibbe, Christian Trautwein, Christian Rupp, Sebastian Mueller, Thomas Longerich, Jan G. Hengstler, Julio Saez‐Rodriguez, Ahmed Ghallab

Date Published: 28th Aug 2021

Publication Type: Journal

Abstract (Expand)

Transcriptome profiling followed by differential gene expression analysis often leads to lists of genes that are hard to analyze and interpret. Functional genomics tools are powerful approaches for downstream analysis, as they summarize the large and noisy gene expression space into a smaller number of biological meaningful features. In particular, methods that estimate the activity of processes by mapping transcripts level to process members are popular. However, footprints of either a pathway or transcription factor (TF) on gene expression show superior performance over mapping-based gene sets. These footprints are largely developed for humans and their usability in the broadly-used model organism Mus musculus is uncertain. Evolutionary conservation of the gene regulatory system suggests that footprints of human pathways and TFs can functionally characterize mice data. In this paper we analyze this hypothesis. We perform a comprehensive benchmark study exploiting two state-of-the-art footprint methods, DoRothEA and an extended version of PROGENy. These methods infer TF and pathway activity, respectively. Our results show that both can recover mouse perturbations, confirming our hypothesis that footprints are conserved between mice and humans. Subsequently, we illustrate the usability of PROGENy and DoRothEA by recovering pathway/TF-disease associations from newly generated disease sets. Additionally, we provide pathway and TF activity scores for a large collection of human and mouse perturbation and disease experiments (2374). We believe that this resource, available for interactive exploration and download (https://saezlab.shinyapps.io/footprint_scores/), can have broad applications including the study of diseases and therapeutics.

Authors: Christian H. Holland, Bence Szalai, Julio Saez-Rodriguez

Date Published: 1st Sep 2019

Publication Type: Not specified

Abstract

Not specified

Authors: Yujia Li, Weiguo Fan, Frederik Link, Sai Wang, Steven Dooley

Date Published: 1st Feb 2022

Publication Type: Journal

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH