Publications

What is a Publication?
13 Publications visible to you, out of a total of 13

Abstract (Expand)

Abstract Background and Aims Steatotic liver disease (SLD) is generally considered to represent a hepatic manifestation of metabolic syndrome and includes a disease spectrum comprising isolated steatosis,ludes a disease spectrum comprising isolated steatosis, metabolic dysfunction‐associated steatohepatitis, liver fibrosis and ultimately cirrhosis. A better understanding of the detailed underlying pathogenic mechanisms of this transition is crucial for the design of new and efficient therapeutic interventions. Thymocyte differentiation antigen (Thy‐1, also known as CD90) expression on fibroblasts controls central functions relevant to fibrogenesis, including proliferation, apoptosis, cytokine responsiveness, and myofibroblast differentiation. Methods The impact of Thy‐1 on the development of SLD and progression to fibrosis was investigated in high‐fat diet (HFD)‐induced SLD wild‐type and Thy‐1‐deficient mice. In addition, the serum soluble Thy‐1 (sThy‐1) concentration was analysed in patients with metabolic dysfunction‐associated SLD stratified according to steatosis, inflammation, or liver fibrosis using noninvasive markers. Results We demonstrated that Thy‐1 attenuates the development of fatty liver and the expression of profibrogenic genes in the livers of HFD‐induced SLD mice. Mechanistically, Thy‐1 directly inhibits the profibrotic activation of nonparenchymal liver cells. In addition, Thy‐1 prevents palmitic acid‐mediated amplification of the inflammatory response of myeloid cells, which might indirectly contribute to the pronounced development of liver fibrosis in Thy‐1‐deficient mice. Serum analysis of patients with metabolically associated steatotic liver disease syndrome revealed that sThy‐1 expression is correlated with liver fibrosis status, as assessed by liver stiffness, the Fib4 score, and the NAFLD fibrosis score. Conclusion Our data strongly suggest that Thy‐1 may function as a fibrosis‐protective factor in mouse and human SLD.

Authors: Valentin Blank, Thomas Karlas, Ulf Anderegg, Johannes Wiegand, Josi Arnold, Linnaeus Bundalian, Gabriela‐Diana Le Duc, Christiane Körner, Thomas Ebert, Anja Saalbach

Date Published: 4th May 2024

Publication Type: Journal

Abstract (Expand)

Prerequisite for a successful proteomics experiment is a high-quality lysis of the sample of interest, resulting in a large number of identified proteins as well as a high coverage of protein sequences. Therefore, the choice of suitable lysis conditions is crucial. Many buffers were previously employed in proteomics studies, yet a comprehensive comparison of lysate preparation conditions was so far missing. In this study, we compared the efficiency of four commonly used lysis buffers, containing the agents NP40, SDS, urea or GdnHCl, in four different types of biological samples (suspension and adherent cell lines, primary mouse cells and mouse liver tissue). After liquid chromatography-mass spectrometry (LC-MS) measurement and MaxQuant analysis, we compared chromatograms, intensities, number of identified proteins and the localization of the identified proteins. Overall, SDS emerged as the most reliable reagent, ensuring stable performance and reproducibility across diverse samples. Furthermore, our data advocated for a dual-sample lysis approach, including that the resulting pellet is lysed again after the initial lysis with a urea lysis buffer and subsequently both lysates are combined for a single LC-MS run to maximize the proteome coverage. However, none of the investigated lysis buffers proved to be superior in every category, indicating that the lysis buffer of choice depends on the proteins of interest and on the biological question. Further, we demonstrated with our systematic studies the establishment of conditions that allows to perform global proteomics and affinity purification-based interactome characterization from the same lysate. In sum our results provide guidance for the best-suited lysis buffer for mass spectrometry-based proteomics depending on the question of interest.

Authors: Barbara Helm, Pauline Hansen, Li Lai, Luisa Schwarzmüller, Simone M. Clas, Annika Richter, Max Ruwolt, Fan Liu, Dario Frey, Lorenza A. D’Alessandro, Wolf-Dieter Lehmann, Marcel Schilling, Dominic Helm, Dorothea Fiedler, Ursula Klingmüller

Date Published: 21st Feb 2024

Publication Type: Journal

Abstract (Expand)

Abstract Chronic liver diseases are worldwide on the rise. Due to the rapidly increasing incidence, in particular in Western countries, metabolic dysfunction-associated steatotic liver disease (MASLD)otic liver disease (MASLD) is gaining importance as the disease can develop into hepatocellular carcinoma. Lipid accumulation in hepatocytes has been identified as the characteristic structural change in MASLD development, but molecular mechanisms responsible for disease progression remained unresolved. Here, we uncover in primary hepatocytes from a preclinical model fed with a Western diet (WD) an increased basal MET phosphorylation and a strong downregulation of the PI3K-AKT pathway. Dynamic pathway modeling of hepatocyte growth factor (HGF) signal transduction combined with global proteomics identifies that an elevated basal MET phosphorylation rate is the main driver of altered signaling leading to increased proliferation of WD-hepatocytes. Model-adaptation to patient-derived hepatocytes reveal patient-specific variability in basal MET phosphorylation, which correlates with patient outcome after liver surgery. Thus, dysregulated basal MET phosphorylation could be an indicator for the health status of the liver and thereby inform on the risk of a patient to suffer from liver failure after surgery.

Authors: Sebastian Burbano De Lara, Svenja Kemmer, Ina Biermayer, Svenja Feiler, Artyom Vlasov, Lorenza A D’Alessandro, Barbara Helm, Christina Mölders, Yannik Dieter, Ahmed Ghallab, Jan G Hengstler, Christiane Körner, Madlen Matz-Soja, Christina Götz, Georg Damm, Katrin Hoffmann, Daniel Seehofer, Thomas Berg, Marcel Schilling, Jens Timmer, Ursula Klingmüller

Date Published: 12th Jan 2024

Publication Type: Journal

Abstract (Expand)

Abstract Type I interferons (IFNs) play a central role not only in innate immunity against viral infection, but also in the antitumour response, e.g. through a direct impact on cell proliferation.act on cell proliferation. Particularly for cancer arising in the context of chronic inflammation, constant exposure to IFNs may constitute a strong selective pressure during tumour evolution. Expansion of neoplastic subclones resistant to the antiproliferative effects of IFNs may contribute to immunoediting of tumours, leading to more aggressive disease. Experimental evidence for this development of IFN-insensitivity has been scarce and its molecular mechanism is unclear. In this study we demonstrate that six weeks exposure of cells to IFN-β in vitro reduces their sensitivity to its antiproliferative effects, and that this phenotype was stable for up to four weeks. Furthermore, we observed substantial differences in cellular sensitivity to growth inhibition by IFN-β in a panel of ten different liver cancer cell lines, most prominently in a pair of highly dedifferentiated cell lines, and least in cells from well-differentiated tumours. In both, long-term IFN selection and in dedifferentiated tumour cell lines, we found IFNAR2 expression to be substantially reduced, suggesting the receptor complex to be a sensitive target amenable to immunoediting. Beyond new insights into possible molecular processes in tumour evolution, these findings might prove valuable for the development of biomarkers allowing to stratify tumours for their sensitivity to IFN treatment in the context of patient tailored therapies.

Authors: Felix Hiebinger, Aiste Kudulyte, Huanting Chi, Sebastian Burbano De Lara, Doroteja Ilic, Barbara Helm, Hendrik Welsch, Viet Loan Dao Thi, Ursula Klingmüller, Marco Binder

Date Published: 1st Dec 2023

Publication Type: Journal

Abstract (Expand)

Type I interferons (IFNs) play a central role not only in innate immunity against viral infection, but also in the antitumour response. Apart from indirect immune-modulatory and anti-angiogenic effects, they have direct impact on cell proliferation. Particularly for cancer arising in the context of chronic inflammation, constant exposure to IFNs may constitute a strong selective pressure during tumour evolution. Expansion of neoplastic subclones or -populations that developed resistance to the antiproliferative effects of IFNs might constitute an important contribution to immunoediting of the cancer cells leading to more aggressive and metastasising disease. Experimental evidence for this development of IFN-insensitivity has been scarce and its molecular mechanism is unclear. In this study we demonstrate that prolonged (six weeks) exposure of cells to IFN-β in vitro reduces their sensitivity to its antiproliferative effects, and that this phenotype was stable for up to four weeks. Furthermore, we observed substantial differences in cellular sensitivity to growth inhibition by IFN-β in a panel of ten different liver cancer cell lines of varying malignity. IFN-resistance was most prominent in a pair of highly dedifferentiated cell lines, and least in cells from well-differentiated tumours, fostering the hypothesis of IFN-driven immunoediting in advanced cancers. In both settings, long-term IFN selection in vitro as well as in dedifferentiated tumour cell lines, we found IFNAR expression to be substantially reduced, suggesting the receptor complex, in particular IFNAR2, to be a sensitive target amenable to immunoediting. Beyond new insights into possible molecular processes in tumour evolution, these findings might prove valuable for the development of biomarkers allowing to stratify tumours for their sensitivity to IFN treatment in the context of patient tailored therapies.

Authors: Felix Hiebinger, Aiste Kudulyte, Huanting Chi, Sebastian Burbano De Lara, Barbara Helm, Hendrik Welsch, Viet Loan Dao Thi, Ursula Klingmüller, Marco Binder

Date Published: 24th Aug 2023

Publication Type: Journal

Abstract

Not specified

Authors: Miquel Serra-Burriel, Adrià Juanola, Feliu Serra-Burriel, Maja Thiele, Isabel Graupera, Elisa Pose, Guillem Pera, Ivica Grgurevic, Llorenç Caballeria, Salvatore Piano, Laurens van Kleef, Mathias Reichert, Dominique Roulot, Juan M Pericàs, Jörn M Schattenberg, Emmanuel A Tsochatztis, Indra Neil Guha, Montserrat Garcia-Retortillo, Rosario Hernández, Jordi Hoyo, Matilde Fuentes, Carmen Expósito, Alba Martínez, Patricia Such, Anita Madir, Sönke Detlefsen, Marta Tonon, Andrea Martini, Ann T Ma, Judith Pich, Eva Bonfill, Marta Juan, Anna Soria, Marta Carol, Jordi Gratacós-Ginès, Rosa M Morillas, Pere Toran, J M Navarrete, Antoni Torrejón, Céline Fournier, Anne Llorca, Anita Arslanow, Harry J de Koning, Fernando Cucchietti, Michael Manns, Phillip N Newsome, Rubén Hernáez, Alina Allen, Paolo Angeli, Robert J de Knegt, Tom H Karlsen, Peter Galle, Vincent Wai-Sun Wong, Núria Fabrellas, Laurent Castera, Aleksander Krag, Frank Lammert, Patrick S Kamath, Pere Ginès, Marifé Alvarez, Peter Andersen, Paolo Angeli, Alba Ardèvol, Anita Arslanow, Luca Beggiato, Zahia Ben Abdesselam, Lucy Bennett, Bajiha Boutouria, Alessandra Brocca, M. Teresa Broquetas, Llorenç Caballeria, Valeria Calvino, Judith Camacho, Aura Capdevila, Marta Carol, Laurent Castera, Marta Cervera, Fernando Cucchietti, Anna de Fuentes, Rob de Knegt, Harry J de Koning, Sonke Detlefsen, Alba Diaz, José Diéguez Bande, Vanessa Esnault, Núria Fabrellas, Josep Lluis Falcó, Rosa Fernández, Céline Fournier, Matilde Fuentes, Peter Galle, Edgar García, Montserrat García-Retortillo, Esther Garrido, Pere Ginès, Rosa Gordillo Medina, Jordi Gratacós-Ginès, Isabel Graupera, Ivica Grgurevic, Indra Neil Guha, Eva Guix, Johanne Kragh Hansen, Rebecca Harris, Elena Hernández Boluda, Rosario Hernández-Ibañez, Jordi Hoyo, Arfan Ikram, Simone Incicco, Mads Israelsen, Marta Juan, Adrià Juanola, Ralf Kaiser, Patrick S Kamath, Tom H Karlsen, Maria Kjærgaard, Marko Korenjak, Aleksander Krag, Marcin Krawczyk, Philippe Laboulaye, Irina Lambert, Frank Lammert, Simon Langkjær Sørensen, Cristina Laserna-Jiménez, Sonia Lazaro Pi, Elsa Ledain, Vincent Levy, Katrine Prier Lindvig, Anne Llorca, Vanessa Londoño, Guirec Loyer, Ann T. Ma, Anita Madir, Michael Manns, Denise Marshall, M. Lluïsa Martí, Sara Martínez, Ricard Martínez Sala, Roser Masa-Font, Jane Møller Jensen, Rosa M Morillas, Laura Muñoz, Ruth Nadal, Laura Napoleone, JM Navarrete, Phillip N Newsome, Vibeke Nielsen, Martina Pérez, Juan Manuel Pericás-Pulido, Salvatore Piano, Judit Pich, Elisa Pose, Judit Presas Escobet, Matthias Reichert, Carlota Riba, Dominique Roulot, Ana Belén Rubio, Maria Sánchez-Morata, Jörn Schattenberg, Miquel Serra-Burriel, Feliu Serra-Burriel, Louise Skovborg Just, Milan Sonneveld, Anna Soria, Christiane Stern, Patricia Such, Maja Thiele, Marta Tonon, Pere Toran, Antoni Torrejón, Emmanuel A Tsochatzis, Laurens van Kleef, Paulien van Wijngaarden, Vanessa Velázquez, Ana Viu, Susanne Nicole Weber, Tracey Wildsmith

Date Published: 1st Aug 2023

Publication Type: Journal

Abstract (Expand)

Chronic liver diseases are worldwide on the rise. Due to the rapidly increasing incidence, in particular in Western countries, Non-alcoholic fatty liver disease (NAFLD) is gaining importance as the disease can develop into hepatocellular carcinoma. Lipid accumulation in hepatocytes has been identified as the characteristic structural change in NAFLD development, but molecular mechanisms responsible for disease progression remained unresolved. Here, we uncover in primary hepatocytes from a preclinical model fed with a Western diet (WD) a strong downregulation of the PI3K-AKT pathway and an upregulation of the MAPK pathway. Dynamic pathway modeling of hepatocyte growth factor (HGF) signal transduction combined with global proteomics identifies that an elevated basal MET phosphorylation rate is the main driver of altered signaling leading to increased proliferation of WD-hepatocytes. Model-adaptation to patient-derived hepatocytes reveal patient-specific variability in basal MET phosphorylation, which correlates with patient outcome after liver surgery. Thus, dysregulated basal MET phosphorylation could be an indicator for the health status of the liver and thereby inform on the risk of a patient to suffer from liver failure after surgery.

Authors: Sebastian Burbano De Lara, Svenja Kemmer, Ina Biermayer, Svenja Feiler, Artyom Vlasov, Lorenza D'Alessandro, Barbara Helm, Yannik Dieter, Ahmed Ghallab, Jan Hengstler, Professor Dr. med. Katrin Hoffmann, Marcel Schilling, Jens Timmer, Ursula Klingmüller

Date Published: 4th Jul 2023

Publication Type: Journal

Abstract (Expand)

Loss of differentiation of primary human hepatocytes (PHHs) ex vivo is a known problem of in vitro liver models. Culture optimizations using collagen type I and Matrigel reduce the dedifferentiation process but are not able to prevent it. While neither of these extracellular matrices (ECMs) on their own correspond to the authentic hepatic ECM, a combination of them could more closely resemble the in vivo situation. Our study aimed to systematically analyze the influence of mixed matrices composed of collagen type I and Matrigel on the maintenance and reestablishment of hepatic functions. Therefore, PHHs were cultured on mixed collagen-Matrigel matrices in monolayer and sandwich cultures and viability, metabolic capacity, differentiation markers, cellular arrangement and the cells' ability to repolarize and form functional bile canaliculi were assessed by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), functional assays and immunofluorescence microscopy. Our results show that mixed matrices were superior to pure matrices in maintaining metabolic capacity and hepatic differentiation. In contrast, Matrigel supplementation can impair the development of a proper hepatocytic polarization. Our systematic study helps to compose an optimized ECM to maintain and reestablish hepatic differentiation on cellular and multicellular levels in human liver models.

Authors: L. Seidemann, S. Prinz, J. C. Scherbel, C. Gotz, D. Seehofer, G. Damm

Date Published: 20th Jan 2023

Publication Type: Journal

Abstract (Expand)

MOTIVATION: Over the last decades, image processing and analysis have become one of the key technologies in systems biology and medicine. The quantification of anatomical structures and dynamic processes in living systems is essential for understanding the complex underlying mechanisms and allows, i.e. the construction of spatio-temporal models that illuminate the interplay between architecture and function. Recently, deep learning significantly improved the performance of traditional image analysis in cases where imaging techniques provide large amounts of data. However, if only a few images are available or qualified annotations are expensive to produce, the applicability of deep learning is still limited. RESULTS: We present a novel approach that combines machine learning-based interactive image segmentation using supervoxels with a clustering method for the automated identification of similarly colored images in large image sets which enables a guided reuse of interactively trained classifiers. Our approach solves the problem of deteriorated segmentation and quantification accuracy when reusing trained classifiers which is due to significant color variability prevalent and often unavoidable in biological and medical images. This increase in efficiency improves the suitability of interactive segmentation for larger image sets, enabling efficient quantification or the rapid generation of training data for deep learning with minimal effort. The presented methods are applicable for almost any image type and represent a useful tool for image analysis tasks in general. AVAILABILITY AND IMPLEMENTATION: The presented methods are implemented in our image processing software TiQuant which is freely available at tiquant.hoehme.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Authors: A. Friebel, T. Johann, D. Drasdo, S. Hoehme

Date Published: 30th Sep 2022

Publication Type: Journal

Abstract (Expand)

Erythropoietin (Epo) ensures survival and proliferation of colony-forming unit erythroid (CFU-E) progenitor cells and their differentiation to hemoglobin-containing mature erythrocytes. A lack of Epo-induced responses causes embryonic lethality, but mechanisms regulating the dynamic communication of cellular alterations to the organismal level remain unresolved. By time-resolved transcriptomics and proteomics, we show that Epo induces in CFU-E cells a gradual transition from proliferation signature proteins to proteins indicative for differentiation, including heme-synthesis enzymes. In the absence of the Epo receptor (EpoR) in embryos, we observe a lack of hemoglobin in CFU-E cells and massive iron overload of the fetal liver pointing to a miscommunication between liver and placenta. A reduction of iron-sulfur cluster-containing proteins involved in oxidative phosphorylation in these embryos leads to a metabolic shift toward glycolysis. This link connecting erythropoiesis with the regulation of iron homeostasis and metabolic reprogramming suggests that balancing these interactions is crucial for protection from iron intoxication and for survival.

Authors: S. Chakraborty, G. Andrieux, P. Kastl, L. Adlung, S. Altamura, M. E. Boehm, L. E. Schwarzmuller, Y. Abdullah, M. C. Wagner, B. Helm, H. J. Grone, W. D. Lehmann, M. Boerries, H. Busch, M. U. Muckenthaler, M. Schilling, U. Klingmuller

Date Published: 20th Sep 2022

Publication Type: Journal

Abstract (Expand)

In health and disease, liver cells are continuously exposed to cytokines and growth factors. While individual signal transduction pathways induced by these factors were studied in great detail, the cellular responses induced by repeated or combined stimulations are complex and less understood. Growth factor receptors on the cell surface of hepatocytes were shown to be regulated by receptor interactions, receptor trafficking and feedback regulation. Here, we exemplify how mechanistic mathematical modelling based on quantitative data can be employed to disentangle these interactions at the molecular level. Crucial is the analysis at a mechanistic level based on quantitative longitudinal data within a mathematical framework. In such multi-layered information, step-wise mathematical modelling using submodules is of advantage, which is fostered by sharing of standardized experimental data and mathematical models. Integration of signal transduction with metabolic regulation in the liver and mechanistic links to translational approaches promise to provide predictive tools for biology and personalized medicine.

Authors: Lorenza A. D’Alessandro, Ursula Klingmüller, Marcel Schilling

Date Published: 30th Jun 2022

Publication Type: Journal

Abstract (Expand)

The Hedgehog signaling pathway regulates many processes during embryogenesis and the homeostasis of adult organs. Recent data suggest that central metabolic processes and signaling cascades in the livers in the liver are controlled by the Hedgehog pathway and that changes in hepatic Hedgehog activity also affect peripheral tissues, such as the reproductive organs in females. Here, we show that hepatocyte-specific deletion of the Hedgehog pathway is associated with the dramatic expansion of adipose tissue in mice, the overall phenotype of which does not correspond to the classical outcome of insulin resistance-associated diabetes type 2 obesity. Rather, we show that alterations in the Hedgehog signaling pathway in the liver lead to a metabolic phenotype that is resembling metabolically healthy obesity. Mechanistically, we identified an indirect influence on the hepatic secretion of the fibroblast growth factor 21, which is regulated by a series of signaling cascades that are directly transcriptionally linked to the activity of the Hedgehog transcription factor GLI1. The results of this study impressively show that the metabolic balance of the entire organism is maintained via the activity of morphogenic signaling pathways, such as the Hedgehog cascade. Obviously, several pathways are orchestrated to facilitate liver metabolic status to peripheral organs, such as adipose tissue.

Authors: Fritzi Ott, Christiane Körner, Kim Werner, Martin Gericke, Ines Liebscher, Donald Lobsien, Silvia Radrezza, Andrej Shevchenko, Ute Hofmann, Jürgen Kratzsch, Rolf Gebhardt, Thomas Berg, Madlen Matz-Soja

Date Published: 1st May 2022

Publication Type: Journal

Abstract (Expand)

Abstract Summary Mass spectrometry-based proteomics is increasingly employed in biology and medicine. To generate reliable information from large datasets and ensure comparability of results, it isrge datasets and ensure comparability of results, it is crucial to implement and standardize the quality control of the raw data, the data processing steps and the statistical analyses. MSPypeline provides a platform for importing MaxQuant output tables, generating quality control reports, data preprocessing including normalization and performing exploratory analyses by statistical inference plots. These standardized steps assess data quality, provide customizable figures and enable the identification of differentially expressed proteins to reach biologically relevant conclusions. Availability and implementation The source code is available under the MIT license at https://github.com/siheming/mspypeline with documentation at https://mspypeline.readthedocs.io. Benchmark mass spectrometry data are available on ProteomeXchange (PXD025792). Supplementary information Supplementary data are available at Bioinformatics Advances online.

Authors: Simon Heming, Pauline Hansen, Artyom Vlasov, Florian Schwörer, Stephen Schaumann, Paulina Frolovaitė, Wolf-Dieter Lehmann, Jens Timmer, Marcel Schilling, Barbara Helm, Ursula Klingmüller

Date Published: 2022

Publication Type: Journal

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH