Publications

What is a Publication?
9 Publications visible to you, out of a total of 9

Abstract

Not specified

Authors: Nachiket Vartak, Dirk Drasdo, Fabian Geisler, Tohru Itoh, Ronald P.J. Oude Elferink, Stan F.J. van de Graaf, John Chiang, Verena Keitel, Michael Trauner, Peter Jansen, Jan G Hengstler

Date Published: 23rd Jun 2021

Publication Type: Journal

Abstract (Expand)

Small‐molecule flux in tissue‐microdomains is essential for organ function, but knowledge of this process is scant due to the lack of suitable methods. We developed two independent techniques that allow the quantification of advection (flow) and diffusion in individual bile canaliculi and in interlobular bile ducts of intact livers in living mice, namely Fluorescence Loss After Photoactivation (FLAP) and Intravital Arbitrary Region Image Correlation Spectroscopy (IVARICS). The results challenge the prevailing ‘mechano‐osmotic’ theory of canalicular bile flow. After active transport across hepatocyte membranes bile acids are transported in the canaliculi primarily by diffusion. Only in the interlobular ducts, diffusion is augmented by regulatable advection. Photoactivation of fluorescein bis‐(5‐carboxymethoxy‐2‐nitrobenzyl)‐ether (CMNB‐caged fluorescein) in entire lobules demonstrated the establishment of diffusive gradients in the bile canalicular network and the sink function of interlobular ducts. In contrast to the bile canalicular network, vectorial transport was detected and quantified in the mesh of interlobular bile ducts. In conclusion, the liver consists of a diffusion dominated canalicular domain, where hepatocytes secrete small molecules and generate a concentration gradient and a flow‐augmented ductular domain, where regulated water influx creates unidirectional advection that augments the diffusive flux.

Authors: Nachiket Vartak, Georgia Guenther, Florian Joly, Amruta Damle‐Vartak, Gudrun Wibbelt, Jörns Fickel, Simone Jörs, Brigitte Begher‐Tibbe, Adrian Friebel, Kasimir Wansing, Ahmed Ghallab, Marie Rosselin, Noemie Boissier, Irene Vignon‐Clementel, Christian Hedberg, Fabian Geisler, Heribert Hofer, Peter Jansen, Stefan Hoehme, Dirk Drasdo, Jan G. Hengstler

Date Published: 19th Jun 2020

Publication Type: Journal

Abstract

Not specified

Authors: Peter L. M. Jansen, Kai Breuhahn, Andreas Teufel, Steven Dooley

Date Published: 22nd Nov 2019

Publication Type: Not specified

Abstract (Expand)

Small-molecule flux in tissue-microdomains is essential for organ function, but knowledge of this process is scant due to the lack of suitable methods applicable to live animals. We developed a methodology based on dynamic and correlative imaging for quantitative intravital flux analysis. Application to the liver, challenged the prevailing ‘mechano-osmotic’ theory of canalicular bile flow. After active transport across hepatocyte membranes bile salts are transported in the canaliculi primarily by diffusion. Only in the interlobular ducts, diffusion is augmented by regulatable advection. We corroborate these observations with in silico simulations and pan-species comparisons of lobule size. This study demonstrates a flux mechanism, where the energy invested in transmembrane transport entropically dissipates in a sub-micron scale vessel network.

Authors: Nachiket Vartak, Georgia Guenther, Florian Joly, Amruta Damle-Vartak, Gudrun Wibbelt, Jörns Fickel, Simone Jörs, Brigitte Begher-Tibbe, Adrian Friebel, Kasimir Wansing, Ahmed Ghallab, Marie Rosselin, Noemie Boissier, Irene Vignon-Clementel, Christian Hedberg, Fabian Geisler, Heribert Hofer, Peter Jansen, Stefan Hoehme, Dirk Drasdo, Jan G. Hengstler

Date Published: 26th Sep 2019

Publication Type: Journal

Abstract

Not specified

Authors: Ahmed Ghallab, Ute Hofmann, Selahaddin Sezgin, Nachiket Vartak, Reham Hassan, Ayham Zaza, Patricio Godoy, Kai Markus Schneider, Georgia Guenther, Yasser A Ahmed, Aya A Abbas, Verena Keitel, Lars Kuepfer, Steven Dooley, Frank Lammert, Christian Trautwein, Michael Spiteller, Dirk Drasdo, Alan F Hofmann, Peter L M Jansen, Jan G Hengstler, Raymond Reif

Date Published: 13th Aug 2018

Publication Type: Not specified

Abstract (Expand)

New technologies to generate, store and retrieve medical and research data are inducing a rapid change in clinical and translational research and health care. Systems medicine is the interdisciplinary approach wherein physicians and clinical investigators team up with experts from biology, biostatistics, informatics, mathematics and computational modeling to develop methods to use new and stored data to the benefit of the patient. We here provide a critical assessment of the opportunities and challenges arising out of systems approaches in medicine and from this provide a definition of what systems medicine entails. Based on our analysis of current developments in medicine and healthcare and associated research needs, we emphasize the role of systems medicine as a multilevel and multidisciplinary methodological framework for informed data acquisition and interdisciplinary data analysis to extract previously inaccessible knowledge for the benefit of patients.

Authors: R. Apweiler, T. Beissbarth, M. R. Berthold, N. Bluthgen, Y. Burmeister, O. Dammann, A. Deutsch, F. Feuerhake, A. Franke, J. Hasenauer, S. Hoffmann, T. Hofer, P. L. Jansen, L. Kaderali, U. Klingmuller, I. Koch, O. Kohlbacher, L. Kuepfer, F. Lammert, D. Maier, N. Pfeifer, N. Radde, M. Rehm, I. Roeder, J. Saez-Rodriguez, U. Sax, B. Schmeck, A. Schuppert, B. Seilheimer, F. J. Theis, J. Vera, O. Wolkenhauer

Date Published: 3rd Mar 2018

Publication Type: Not specified

Abstract (Expand)

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in children and adolescents today. In comparison to adult disease, pediatric NAFLD may show a periportal localization, which is associated with advanced fibrosis. This study aimed to assess the role of genetic risk variants for histologic disease pattern and severity in childhood NAFLD. METHODS: We studied 14 single nucleotide polymorphisms (SNP) in a cohort of 70 adolescents with biopsy-proven NAFLD. Genotype was compared to an adult control cohort (n=200) and analyzed in relation to histologic disease severity and liver tissue proteomics. RESULTS: Three of the 14 SNPs were significantly associated with pediatric NAFLD after FDR adjustment, rs738409 (PNPLA3, P=2.80x10(-06) ), rs1044498 (ENPP1, P=0.0091) and rs780094 (GCKR, P=0.0281). The severity of steatosis was critically associated with rs738409 (OR=3.25; 95% CI: 1.72-6.52, FDR adjusted P=0.0070). The strongest variants associated with severity of fibrosis were rs1260326, rs780094 (both GCKR) and rs659366 (UCP2). PNPLA3 was associated with a portal pattern of steatosis, inflammation and fibrosis. Proteome profiling revealed decreasing levels of GCKR protein with increasing carriage of the rs1260326/rs780094 minor alleles and down-regulation of the retinol pathway in rs738409 G/G carriers. Computational metabolic modelling highlighted functional relevance of PNPLA3, GCKR and UCP2 for NAFLD development. CONCLUSIONS: This study provides evidence for the role of PNPLA3 as a determinant of portal NAFLD localization and severity of portal fibrosis in children and adolescents, the risk variant being associated with an impaired hepatic retinol metabolism. This article is protected by copyright. All rights reserved.

Authors: C. A. Hudert, S. Selinski, B. Rudolph, H. Blaker, C. Loddenkemper, R. Thielhorn, N. Berndt, K. Golka, C. Cadenas, J. Reinders, S. Henning, P. Bufler, P. L. M. Jansen, H. G. Holzhutter, D. Meierhofer, J. G. Hengstler, S. Wiegand

Date Published: 18th Jan 2018

Publication Type: Not specified

Abstract (Expand)

In this review we develop the argument that cholestatic liver diseases, particularly primary biliary cholangitis and primary sclerosing cholangitis (PSC), evolve over time with anatomically an ascending course of the disease process. The first and early lesions are in "downstream" bile ducts. This eventually leads to cholestasis, and this causes bile salt (BS)-mediated toxic injury of the "upstream" liver parenchyma. BS are toxic in high concentration. These concentrations are present in the canalicular network, bile ducts, and gallbladder. Leakage of bile from this network and ducts could be an important driver of toxicity. The liver has a great capacity to adapt to cholestasis, and this may contribute to a variable symptom-poor interval that is often observed. Current trials with drugs that target BS toxicity are effective in only about 50%-60% of primary biliary cholangitis patients, with no effective therapy in PSC. This motivated us to develop and propose a new view on the pathophysiology of primary biliary cholangitis and PSC in the hope that these new drugs can be used more effectively. These views may lead to better stratification of these diseases and to recommendations on a more "tailored" use of the new therapeutic agents that are currently tested in clinical trials. Apical sodium-dependent BS transporter inhibitors that reduce intestinal BS absorption lower the BS load and are best used in cholestatic patients. The effectiveness of BS synthesis-suppressing drugs, such as farnesoid X receptor agonists, is greatest when optimal adaptation is not yet established. By the time cytochrome P450 7A1 expression is reduced these drugs may be less effective. Anti-inflammatory agents are probably most effective in early disease, while drugs that antagonize BS toxicity, such as ursodeoxycholic acid and nor-ursodeoxycholic acid, may be effective at all disease stages. Endoscopic stenting in PSC should be reserved for situations of intercurrent cholestasis and cholangitis, not for cholestasis in end-stage disease. These are arguments to consider a step-wise pathophysiology for these diseases, with therapy adjusted to disease stage. An obstacle in such an approach is that disease stage-defining biomarkers are still lacking. This review is meant to serve as a call to prioritize the development of biomarkers that help to obtain a better stratification of these diseases. (Hepatology 2017;65:722-738).

Authors: P. L. Jansen, A. Ghallab, N. Vartak, R. Reif, F. G. Schaap, J. Hampe, J. G. Hengstler

Date Published: 17th Feb 2017

Publication Type: Not specified

Abstract (Expand)

In this review we develop the argument that cholestatic liver diseases, particularly primary biliary cholangitis and primary sclerosing cholangitis (PSC), evolve over time with anatomically an ascending course of the disease process. The first and early lesions are in "downstream" bile ducts. This eventually leads to cholestasis, and this causes bile salt (BS)-mediated toxic injury of the "upstream" liver parenchyma. BS are toxic in high concentration. These concentrations are present in the canalicular network, bile ducts, and gallbladder. Leakage of bile from this network and ducts could be an important driver of toxicity. The liver has a great capacity to adapt to cholestasis, and this may contribute to a variable symptom-poor interval that is often observed. Current trials with drugs that target BS toxicity are effective in only about 50%-60% of primary biliary cholangitis patients, with no effective therapy in PSC. This motivated us to develop and propose a new view on the pathophysiology of primary biliary cholangitis and PSC in the hope that these new drugs can be used more effectively. These views may lead to better stratification of these diseases and to recommendations on a more "tailored" use of the new therapeutic agents that are currently tested in clinical trials. Apical sodium-dependent BS transporter inhibitors that reduce intestinal BS absorption lower the BS load and are best used in cholestatic patients. The effectiveness of BS synthesis-suppressing drugs, such as farnesoid X receptor agonists, is greatest when optimal adaptation is not yet established. By the time cytochrome P450 7A1 expression is reduced these drugs may be less effective. Anti-inflammatory agents are probably most effective in early disease, while drugs that antagonize BS toxicity, such as ursodeoxycholic acid and nor-ursodeoxycholic acid, may be effective at all disease stages. Endoscopic stenting in PSC should be reserved for situations of intercurrent cholestasis and cholangitis, not for cholestasis in end-stage disease. These are arguments to consider a step-wise pathophysiology for these diseases, with therapy adjusted to disease stage. An obstacle in such an approach is that disease stage-defining biomarkers are still lacking. This review is meant to serve as a call to prioritize the development of biomarkers that help to obtain a better stratification of these diseases. (Hepatology 2017;65:722-738).

Authors: Peter L.M. Jansen, Ahmed Ghallab, Nachiket Vartak, Raymond Reif, Frank G. Schaap, Jochen Hampe, Jan G. Hengstler

Date Published: 1st Feb 2017

Publication Type: Not specified

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH