Publications

52 Publications visible to you, out of a total of 52

Abstract (Expand)

Structural changes of soft tissues on the cellular level can be characterized by histopathology, but not longitudinally in the same tissue. Alterations of cellular structures and tissue matrix are associated with changes in biophysical properties which can be monitored longitudinally by quantitative diffusion-weighted imaging (DWI) and magnetic resonance elastography (MRE). In this work, DWI and MRE examinations were performed in a 0.5-Tesla compact scanner to investigate longitudinal changes in water diffusivity, stiffness and viscosity of ex-vivo rat livers for up to 20 h post-mortem (pm). The effect of blood on biophysical parameters was examined in 13 non-perfused livers (containing blood, NPLs) and 14 perfused livers (blood washed out, PLs). Changes in cell shape, cell packing and cell wall integrity were characterized histologically. In all acquisitions, NPLs presented with higher shear-wave speed (c), higher shear-wave penetration rate (a) and smaller apparent-diffusion-coefficients (ADCs) than PL. Time-resolved analysis revealed three distinct phases: (i) an initial phase (up to 2 h pm) with markedly increased c and a and reduced ADCs; (ii) an extended phase with relatively stable values; and (iii) a degradation phase characterized by significant increases in a (10 h pm in NPLs and PLs) and ADCs (10 h pm in NPLs, 13 h pm in PLs). Histology revealed changes in cell shape and packing along with decreased cell wall integrity, indicating tissue degradation in NPLs and PLs 10 h pm. Taken together, our results demonstrate that the biophysical properties of fresh liver tissue rapidly change within 2 h pm, which seems to be an effect of both cytotoxic edema and vascular blood content. Several hours later, disruption of cell walls resulted in higher water diffusivity and wave penetration. These results reveal the individual contributions of vascular components and cellular integrity to liver elastography and provide a biophysical, imaging-based fingerprint of liver tissue degradation.

Authors: K. Garczynska, H. Tzschatzsch, S. Assili, A. A. Kuhl, A. Hackel, E. Schellenberger, N. Berndt, H. G. Holzhutter, J. Braun, I. Sack, J. Guo

Date Published: 20th Aug 2021

Publication Type: Journal

Abstract (Expand)

Alzheimer's disease (AD) is frequently accompanied by progressing weight loss, correlating with mortality. Counter-intuitively, weight loss in old age might predict AD onset but obesity in midlife increases AD risk. Furthermore, AD is associated with diabetes-like alterations in glucose metabolism. Here, we investigated metabolic features of amyloid precursor protein overexpressing APP23 female mice modeling AD upon long-term challenge with high-sucrose (HSD) or high-fat diet (HFD). Compared to wild type littermates (WT), APP23 females were less prone to mild HSD-induced and considerable HFD-induced glucose tolerance deterioration, despite unaltered glucose tolerance during normal-control diet. Indirect calorimetry revealed increased energy expenditure and hyperactivity in APP23 females. Dietary interventions, especially HFD, had weaker effects on lean and fat mass gain, steatosis and adipocyte hypertrophy of APP23 than WT mice, as shown by (1)H-magnetic-resonance-spectroscopy, histological and biochemical analyses. Proteome analysis revealed differentially regulated expression of mitochondrial proteins in APP23 livers and brains. In conclusion, hyperactivity, increased metabolic rate, and global mitochondrial dysfunction potentially add up to the development of AD-related body weight changes in APP23 females, becoming especially evident during diet-induced metabolic challenge. These findings emphasize the importance of translating this metabolic phenotyping into human research to decode the metabolic component in AD pathogenesis.

Authors: S. Schreyer, N. Berndt, J. Eckstein, M. Mulleder, S. Hemmati-Sadeghi, C. Klein, B. Abuelnor, A. Panzel, D. Meierhofer, J. Spranger, B. Steiner, S. Brachs

Date Published: 16th Apr 2021

Publication Type: Journal

Abstract (Expand)

Non-Alcoholic Fatty Liver Disease (NAFLD) is the most common type of chronic liver disease in developed nations, affecting around 25% of the population. Elucidating the factors causing NAFLD in individual patients to progress in different rates and to different degrees of severity, is a matter of active medical research. Here, we aim to provide evidence that the intra-hepatic heterogeneity of rheological, metabolic and tissue-regenerating capacities plays a central role in disease progression. We developed a generic mathematical model that constitutes the liver as ensemble of small liver units differing in their capacities to metabolize potentially cytotoxic free fatty acids (FFAs) and to repair FFA-induced cell damage. Transition from simple steatosis to more severe forms of NAFLD is described as self-amplifying process of cascading liver failure, which, to stop, depends essentially on the distribution of functional capacities across the liver. Model simulations provided the following insights: (1) A persistently high plasma level of FFAs is sufficient to drive the liver through different stages of NAFLD; (2) Presence of NAFLD amplifies the deleterious impact of additional tissue-damaging hits; and (3) Coexistence of non-steatotic and highly steatotic regions is indicative for the later occurrence of severe NAFLD stages.

Authors: H. G. Holzhutter, N. Berndt

Date Published: 5th Mar 2021

Publication Type: Journal

Abstract (Expand)

Besides the liver, hepatitis C virus (HCV) infection also affects kidney allografts. The aim of this study was to longitudinally evaluate viscoelasticity changes in the liver and in kidney allografts in kidney transplant recipients (KTRs) with HCV infection after treatment with direct-acting antiviral agents (DAAs). Fifteen KTRs with HCV infection were treated with DAAs (daclatasvir and sofosbuvir) for 3 months and monitored at baseline, end of treatment (EOT), and 3 (FU1) and 12 (FU2) months after EOT. Shear-wave speed (SWS) and loss angle of the complex shear modulus (phi), reflecting stiffness and fluidity, respectively, were reconstructed from multifrequency magnetic resonance elastography data with tomoelastography post-processing. After virus elimination by DAAs, hepatic stiffness and fluidity decreased, while kidney allograft stiffness and fluidity increased compared with baseline (hepatic stiffness change at FU1: -0.14 m/s, p < 0.01, and at FU2: -0.11 m/s, p < 0.05; fluidity at FU1: -0.05 rad, p = 0.04 and unchanged at FU2: p = 0.20; kidney allograft stiffness change at FU1: +0.27 m/s, p = 0.01, and at FU2: +0.30 m/s, p < 0.01; fluidity at FU1 and FU2: +0.06 rad, p = 0.02). These results suggest the restoration of mechanically sensitive structures and functions in both organs. Tomoelastography can be used to monitor the therapeutic results of HCV treatment non-invasively on the basis of hepatic and renal viscoelastic parameters.

Authors: S. R. Marticorena Garcia, C. E. Althoff, M. Durr, F. Halleck, K. Budde, U. Grittner, C. Burkhardt, K. Johrens, J. Braun, T. Fischer, B. Hamm, I. Sack, J. Guo

Date Published: 1st Feb 2021

Publication Type: Journal

Abstract (Expand)

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in children and adolescents. About 30% of patients with NAFLD progress to the more severe condition of nonalcoholic steatohepatitis (NASH), which is typically diagnosed using liver biopsy. Liver stiffness (LS) quantified by elastography is a promising imaging marker for the noninvasive assessment of NAFLD and NASH in pediatric patients. However, the link between LS and specific histopathologic features used for clinical staging of NAFLD is not well defined. Furthermore, LS data reported in the literature can vary greatly due to the use of different measurement techniques. Uniquely, time-harmonic elastography (THE) based on ultrasound and magnetic resonance elastography (MRE) use the same mechanical stimulation, allowing us to compare LS in biopsy-proven NAFLD previously determined by THE and MRE in 67 and 50 adolescents, respectively. In the present work, we analyzed the influence of seven distinct histopathologic features on LS, including septal infiltration, bridging fibrosis, pericellular fibrosis, hepatocellular ballooning, portal inflammation, lobular inflammation, and steatosis. LS was highly correlated with periportal and lobular fibrosis as well as hepatocellular ballooning while no independent association was found for inflammation and steatosis. Based on this analysis, we propose a composite elastography score (CES) which includes the four key histopathologic features identified as mechanically relevant. Interestingly, CES-relevant histopathologic features were associated with zonal distribution patterns of pediatric NAFLD. Mechano-structural changes associated with NAFLD progression can be histopathologically staged using the CES, which is easily determined noninvasively based on LS measured by time-harmonic elastography.

Authors: C. A. Hudert, H. Tzschatzsch, B. Rudolph, C. Loddenkemper, H. G. Holzhutter, L. Kalveram, S. Wiegand, J. Braun, I. Sack, J. Guo

Date Published: 17th Jan 2021

Publication Type: Journal

Abstract (Expand)

Non-alcoholic fatty liver disease (NAFLD) is a significant health burden in obese children for which there is currently no specific therapy. Preclinical studies indicate that epoxyeicosanoids, a class of bioactive lipid mediators that are generated by cytochrome P450 (CYP) epoxygenases and inactivated by the soluble epoxide hydrolase (sEH), play a protective role in NAFLD. We performed a comprehensive lipidomics analysis using liver tissue and blood samples of 40 children with NAFLD. Proteomics was performed to determine CYP epoxygenase and sEH expressions. Hepatic epoxyeicosanoids significantly increased with higher grades of steatosis, while their precursor PUFAs were unaltered. Concomitantly, total CYP epoxygenase activity increased while protein level and activity of sEH decreased. In contrast, hepatic epoxyeicosanoids showed a strong decreasing trend with higher stages of fibrosis, accompanied by a decrease of CYP epoxygenase activity and protein expression. These findings suggest that the CYP epoxygenase/sEH pathway represents a potential pharmacologic target for the treatment of NAFLD.

Authors: L. Kalveram, W. H. Schunck, M. Rothe, B. Rudolph, C. Loddenkemper, H. G. Holzhutter, S. Henning, P. Bufler, M. Schulz, D. Meierhofer, I. W. Zhang, K. H. Weylandt, S. Wiegand, C. A. Hudert

Date Published: 4th Jan 2021

Publication Type: Journal

Abstract (Expand)

BACKGROUND & AIMS: In chronic liver diseases, inflammation induces oxidative stress and thus may contribute to the progression of liver injury, fibrosis, and carcinogenesis. The KEAP1/NRF2 axis is a major regulator of cellular redox balance. In the present study, we investigated whether the KEAP1/NRF2 system is involved in liver disease progression in humans and mice. METHODS: The clinical relevance of oxidative stress was investigated by liver RNA sequencing in a well-characterized cohort of patients with non-alcoholic fatty liver disease (n = 63) and correlated with histological and clinical parameters. For functional analysis, hepatocyte-specific Nemo knockout (NEMO(Deltahepa)) mice were crossed with hepatocyte-specific Keap1 knockout (KEAP1(Deltahepa)) mice. RESULTS: Immunohistochemical analysis of human liver sections showed increased oxidative stress and high NRF2 expression in patients with chronic liver disease. RNA sequencing of liver samples in a human pediatric NAFLD cohort revealed a significant increase of NRF2 activation correlating with the grade of inflammation, but not with the grade of steatosis, which could be confirmed in a second adult NASH cohort. In mice, microarray analysis revealed that Keap1 deletion induces NRF2 target genes involved in glutathione metabolism and xenobiotic stress (e.g., Nqo1). Furthermore, deficiency of one of the most important antioxidants, glutathione (GSH), in NEMO(Deltahepa) livers was rescued after deleting Keap1. As a consequence, NEMO(Deltahepa)/KEAP1(Deltahepa) livers showed reduced apoptosis compared to NEMO(Deltahepa) livers as well as a dramatic downregulation of genes involved in cell cycle regulation and DNA replication. Consequently, NEMO(Deltahepa)/KEAP1(Deltahepa) compared to NEMO(Deltahepa) livers displayed decreased fibrogenesis, lower tumor incidence, reduced tumor number, and decreased tumor size. CONCLUSIONS: NRF2 activation in patients with non-alcoholic steatohepatitis correlates with the grade of inflammation, but not steatosis. Functional analysis in mice demonstrated that NRF2 activation in chronic liver disease is protective by ameliorating fibrogenesis, initiation and progression of hepatocellular carcinogenesis. LAY SUMMARY: The KEAP1 (Kelch-like ECH-associated protein-1)/NRF2 (erythroid 2-related factor 2) axis has a major role in regulating cellular redox balance. Herein, we show that NRF2 activity correlates with the grade of inflammation in patients with non-alcoholic steatohepatitis. Functional studies in mice actually show that NRF2 activation, resulting from KEAP1 deletion, protects against fibrosis and cancer.

Authors: A. Mohs, T. Otto, K. M. Schneider, M. Peltzer, M. Boekschoten, C. H. Holland, C. A. Hudert, L. Kalveram, S. Wiegand, J. Saez-Rodriguez, T. Longerich, J. G. Hengstler, C. Trautwein

Date Published: 22nd Dec 2020

Publication Type: Journal

Abstract (Expand)

During pregnancy, the body's hyperestrogenic state alters hepatic metabolism and synthesis. While biochemical changes related to liver function during normal pregnancy are well understood, pregnancy-associated alterations in biophysical properties of the liver remain elusive. In this study, we investigated 26 ex vivo fresh liver specimens harvested from pregnant and non-pregnant rats by diffusion-weighted imaging (DWI) and magnetic resonance elastography (MRE) in a 0.5-Tesla compact magnetic resonance imaging (MRI) scanner. Water diffusivity and viscoelastic parameters were compared with histological data and blood markers. We found livers from pregnant rats to have (i) significantly enlarged hepatocytes (26 +/- 15%, p < 0.001), (ii) increased liver stiffness (12 +/- 15%, p = 0.012), (iii) decreased viscosity (-23 +/- 14%, p < 0.001), and (iv) increased water diffusivity (12 +/- 11%, p < 0.001). In conclusion, increased stiffness and reduced viscosity of the liver during pregnancy are mainly attributable to hepatocyte enlargement. Hypertrophy of liver cells imposes fewer restrictions on intracellular water mobility, resulting in a higher hepatic water diffusion coefficient. Collectively, MRE and DWI have the potential to inform on structural liver changes associated with pregnancy in a clinical context.

Authors: K. Garczynska, H. Tzschatzsch, A. A. Kuhl, A. S. Morr, L. Lilaj, A. Hackel, E. Schellenberger, N. Berndt, H. G. Holzhutter, J. Braun, I. Sack, J. Guo

Date Published: 17th Dec 2020

Publication Type: Journal

Abstract (Expand)

PURPOSE: With abdominal magnetic resonance elastography (MRE) often suffering from breathing artifacts, it is recommended to perform MRE during breath-hold. However, breath-hold acquisition prohibits extended multifrequency MRE examinations and yields inconsistent results when patients cannot hold their breath. The purpose of this work was to analyze free-breathing strategies in multifrequency MRE of abdominal organs. METHODS: Abdominal MRE with 30, 40, 50, and 60 Hz vibration frequencies and single-shot, multislice, full wave-field acquisition was performed four times in 11 healthy volunteers: once with multiple breath-holds and three times during free breathing with ungated, gated, and navigated slice adjustment. Shear wave speed maps were generated by tomoelastography inversion. Image registration was applied for correction of intrascan misregistration of image slices. Sharpness of features was quantified by the variance of the Laplacian. RESULTS: Total scan times ranged from 120 seconds for ungated free-breathing MRE to 376 seconds for breath-hold examinations. As expected, free-breathing MRE resulted in larger organ displacements (liver, 4.7 +/- 1.5 mm; kidneys, 2.4 +/- 2.2 mm; spleen, 3.1 +/- 2.4 mm; pancreas, 3.4 +/- 1.4 mm) than breath-hold MRE (liver, 0.7 +/- 0.2 mm; kidneys, 0.4 +/- 0.2 mm; spleen, 0.5 +/- 0.2 mm; pancreas, 0.7 +/- 0.5 mm). Nonetheless, breathing-related displacement did not affect mean shear wave speed, which was consistent across all protocols (liver, 1.43 +/- 0.07 m/s; kidneys, 2.35 +/- 0.21 m/s; spleen, 2.02 +/- 0.15 m/s; pancreas, 1.39 +/- 0.15 m/s). Image registration before inversion improved the quality of free-breathing examinations, yielding no differences in image sharpness to uncorrected breath-hold MRE in most organs (P > .05). CONCLUSION: Overall, multifrequency MRE is robust to breathing when considering whole-organ values. Respiration-related blurring can readily be corrected using image registration. Consequently, ungated free-breathing MRE combined with image registration is recommended for multifrequency MRE of abdominal organs.

Authors: M. Shahryari, T. Meyer, C. Warmuth, H. Herthum, G. Bertalan, H. Tzschatzsch, L. Stencel, S. Lukas, L. Lilaj, J. Braun, I. Sack

Date Published: 26th Oct 2020

Publication Type: Journal

Abstract (Expand)

Metabolic reprogramming is a characteristic feature of cancer cells, but there is no unique metabolic program for all tumors. Genetic and gene expression studies have revealed heterogeneous inter- and intratumor patterns of metabolic enzymes and membrane transporters. The functional implications of this heterogeneity remain often elusive. Here, we applied a systems biology approach to gain a comprehensive and quantitative picture of metabolic changes in individual hepatocellular carcinoma (HCC). We used protein intensity profiles determined by mass spectrometry in samples of 10 human HCCs and the adjacent noncancerous tissue to calibrate Hepatokin1, a complex mathematical model of liver metabolism. We computed the 24-h profile of 18 metabolic functions related to carbohydrate, lipid, and nitrogen metabolism. There was a general tendency among the tumors toward downregulated glucose uptake and glucose release albeit with large intertumor variability. This finding calls into question that the Warburg effect dictates the metabolic phenotype of HCC. All tumors comprised elevated beta-oxidation rates. Urea synthesis was found to be consistently downregulated but without compromising the tumor's capacity for ammonia detoxification owing to increased glutamine synthesis. The largest intertumor heterogeneity was found for the uptake and release of lactate and the size of the cellular glycogen content. In line with the observed metabolic heterogeneity, the individual HCCs differed largely in their vulnerability against pharmacological treatment with metformin. Taken together, our approach provided a comprehensive and quantitative characterization of HCC metabolism that may pave the way for a computational a priori assessment of pharmacological therapies targeting metabolic processes of HCC.

Authors: N. Berndt, J. Eckstein, N. Heucke, T. Wuensch, R. Gajowski, M. Stockmann, D. Meierhofer, H. G. Holzhutter

Date Published: 8th Oct 2020

Publication Type: Journal

Abstract (Expand)

OBJECTIVES: Estimations of tumor volume and boundary in pancreatic ductal adenocarcinoma (PDAC) are crucial for surgery planning. The aim of the study is to evaluate tomoelastography for detection of PDAC and quantification of PDAC volume based on tissue stiffness. MATERIALS AND METHODS: From March 2018 to December 2019, a total of 102 participants (30 healthy participants and 72 patients with histologically proven PDAC) were prospectively enrolled in a multicenter study. Multifrequency magnetic resonance elastography was combined with tomoelastography postprocessing to generate maps of shear wave speed (SWS) depicting highly resolved anatomical details of tissue stiffness. Subregional analysis of pancreatic head, body, and tail and reproducibility tests were performed in healthy participants, whereas tumorous (PDAC-T) and nontumorous (PDAC-NT) pancreatic tissue analysis was conducted in patients. In all patients, tumor volumes measured by computed tomography (CT) were compared with SWS-derived volumes. In addition, in 32 patients, tumor sizes were evaluated by macroscopy after resection. RESULTS: Tumor volumes were quantified in 99% and 87% of all cases with tomoelastography and CT, respectively. Pancreatic SWS was highly reproducible (repeatability coefficient = 0.12) and did not vary regionally or with patient age, sex, or body mass index (all P > 0.08). Shear wave speed was higher in PDAC-T (2.08 +/- 0.38 m/s) than in healthy (1.25 +/- 0.09 m/s; P < 0.001) and PDAC-NT (1.28 +/- 0.14 m/s; P < 0.001) participants. A threshold of 1.47 m/s separated PDAC-T from healthy volunteers (area under the curve = 1.0, sensitivity = 100%, specificity = 100%), while 1.49 m/s separated PDAC-T from PDAC-NT with high accuracy (area under the curve = 0.99, sensitivity = 90%, specificity = 100%). Tomoelastography-derived tumor volume correlated with CT volume (r = 0.91, P < 0.001) and ex vivo tumor volume (r = 0.66, P < 0.001). CONCLUSIONS: Tomoelastography provides a quantitative imaging marker for tissue stiffness depicting PDAC boundaries and separates PDAC from unaffected pancreatic tissue.

Authors: S. R. Marticorena Garcia, L. Zhu, E. Gultekin, R. Schmuck, C. Burkhardt, M. Bahra, D. Geisel, M. Shahryari, J. Braun, B. Hamm, Z. Y. Jin, I. Sack, J. Guo

Date Published: 17th Aug 2020

Publication Type: Journal

Abstract (Expand)

BACKGROUND & AIMS: Zone-dependent differences in the expression of metabolic enzymes along the porto-central axis of the acinus are a long-known feature of liver metabolism. A prominent example is the preferential localization of the enzyme glutamine synthetase in pericentral hepatocytes, where it converts potentially toxic ammonia to the valuable amino acid glutamine. However, with the exception of a few key regulatory enzymes, a comprehensive and quantitative assessment of zonal differences in the abundance of metabolic enzymes and much more importantly, an estimation of the associated functional differences between portal and central hepatocytes is missing thus far. APPROACH & RESULTS: We addressed this problem by establishing a new method for the separation of periportal and pericentral hepatocytes that yields sufficiently pure fractions of both cell populations. Quantitative shotgun proteomics identified hundreds of differentially expressed enzymes in the two cell populations. We used zone-specific proteomics data for scaling of the maximal activities to generate portal and central instantiations of a comprehensive kinetic model of central hepatic metabolism (Hepatokin1). CONCLUSION: The model simulations revealed significant portal-to-central differences in almost all metabolic pathways involving carbohydrates, fatty acids, amino acids and detoxification.

Authors: N. Berndt, E. Kolbe, R. Gajowski, J. Eckstein, F. Ott, D. Meierhofer, H. G. Holzhutter, M. Matz-Soja

Date Published: 14th Apr 2020

Publication Type: Not specified

Abstract (Expand)

Maintenance of tissue extracellular matrix (ECM) and its biomechanical properties for tissue engineering is one of the substantial challenges in the field of decellularization and recellularization. Preservation of the organ-specific biomatrix is crucial for successful recellularization to support cell survival, proliferation, and functionality. However, understanding ECM properties with and without its inhabiting cells as well as the transition between the two states lacks appropriate test methods capable of quantifying bulk viscoelastic parameters in soft tissues. We used compact magnetic resonance elastography (MRE) with 400, 500, and 600 Hz driving frequency to investigate rat liver specimens for quantification of viscoelastic property changes resulting from decellularization. Tissue structures in native and decellularized livers were characterized by collagen and elastin quantification, histological analysis, and scanning electron microscopy. Decellularization did not affect the integrity of microanatomy and structural composition of liver ECM but was found to be associated with increases in the relative amounts of collagen by 83-fold (37.4 +/- 17.5 vs. 0.5 +/- 0.01 mug/mg, p = 0.0002) and elastin by approx. 3-fold (404.1 +/- 139.6 vs. 151.0 +/- 132.3 mug/mg, p = 0.0046). Decellularization reduced storage modulus by approx. 9-fold (from 4.9 +/- 0.8 kPa to 0.5 +/- 0.5 kPa, p < 0.0001) and loss modulus by approx. 7-fold (3.6 kPa to 0.5 kPa, p < 0.0001), indicating a marked loss of global tissue rigidity as well as a property shift from solid towards more fluid tissue behavior (p = 0.0097). Our results suggest that the rigidity of liver tissue is largely determined by cellular components, which are replaced by fluid-filled spaces when cells are removed. This leads to an overall increase in tissue fluidity and a viscous drag within the relatively sparse remaining ECM. Compact MRE is an excellent tool for quantifying the mechanical properties of decellularized biological tissue and a promising candidate for useful applications in tissue engineering.

Authors: H. Everwien, A. Ariza de Schellenberger, N. Haep, H. Tzschatzsch, J. Pratschke, I. M. Sauer, J. Braun, K. H. Hillebrandt, I. Sack

Date Published: 17th Mar 2020

Publication Type: Not specified

Abstract (Expand)

The principle of dynamic liver function breath tests is founded on the administration of a (13)C-labeled drug and subsequent monitoring of (13)CO2 in the breath, quantified as time series delta over natural baseline (13)CO2 (DOB) liberated from the drug during hepatic CYP-dependent detoxification. One confounding factor limiting the diagnostic value of such tests is that only a fraction of the liberated (13)CO2 is immediately exhaled, while another fraction is taken up by body compartments from which it returns with delay to the plasma. The aims of this study were to establish a novel variant of the methacetin-based breath test LiMAx that allows to estimate and to eliminate the confounding effect of systemic (13)CO2 distribution on the DOB curve and thus enables a more reliable assessment of the hepatic detoxification capacity compared with the conventional LiMAx test. We designed a new test variant (named "2DOB") consisting of two consecutive phases. Phase 1 is initiated by the intravenous administration of (13)C-bicarbonate. Phase 2 starts about 30 min later with the intravenous administration of the (13)C-labelled test drug. Using compartment modelling, the resulting 2-phasic DOB curve yields the rate constants for the irreversible elimination and the reversible exchange of plasma (13)CO2 with body compartments (phase 1) and for the detoxification and exchange of the drug with body compartments (phase 2). We carried out the 2DOB test with the test drug (13)C-methacetin in 16 subjects with chronic liver pathologies and 22 normal subjects, who also underwent the conventional LiMAx test. Individual differences in the systemic CO2 kinetics can lead to deviations up to a factor of 2 in the maximum of DOB curves (coefficient of variation CV approximately 0.2) which, in particular, may hamper the discrimination between subjects with normal or mildly impaired detoxification capacities. The novel test revealed that a significant portion of the drug is not immediately metabolized, but transiently taken up into a storage compartment. Intriguingly, not only the hepatic detoxification rate but also the storage capacity of the drug, turned out to be indicative for a normal liver function. We thus used both parameters to define a scoring function which yielded an excellent disease classification (AUC = 0.95) and a high correlation with the MELD score (RSpearman = 0.92). The novel test variant 2DOB promises a significant improvement in the assessment of impaired hepatic detoxification capacity. The suitability of the test for the reliable characterization of the natural history of chronic liver diseases (fatty liver-fibrosis-cirrhosis) has to be assessed in further studies.

Authors: H. G. Holzhutter, T. Wuensch, R. Gajowski, N. Berndt, S. Bulik, D. Meierhofer, M. Stockmann

Date Published: 6th Feb 2020

Publication Type: Not specified

Abstract (Expand)

OBJECTIVES: Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a very low 5-year survival rate of 8%. The aims of this study are to determine reference values and physiologic confounders in healthy pancreas and to assess the diagnostic accuracy of ultrasound time-harmonic elastography (THE) in the detection of PDAC. MATERIALS AND METHODS: From March 2017 through May 2019, a total of 54 study participants with healthy pancreas (n = 33, CTR) or PDAC (n = 21) were prospectively enrolled. Repeatability of THE was tested in a CTR subgroup (n = 5) undergoing repeat measurement on 4 different days. Interobserver variability was analyzed in 10 healthy volunteers. Age-matched and sex-matched subgroups of CTR (n = 13) and PDAC (n = 13) were compared. In participants with histopathologically proven PDAC, measurements were performed separately in tumorous (PDAC-T) and nontumorous pancreatic tissue (PDAC-NT). Diagnostic performance of pancreatic THE was assessed by receiver operating characteristic curve analysis. RESULTS: Time-harmonic elastography was highly repeatable (intraclass correlation coefficient, 0.99), and interobserver agreement was excellent (intraclass correlation coefficient, 0.97). Shear wave speed (SWS) of PDAC-T (mean [95% confidence interval] in meters per second, 1.88 +/- 0.07 [1.84-1.92]) was higher than SWS of CTR (1.63 +/- 0.04 [1.60-1.66], P < 0.001) and PDAC-NT (1.59 +/- 0.03 [1.57-1.61], P < 0.001). The exploratory diagnostic performance of THE in separating PDAC-T was excellent (area under the receiver operating characteristic curve, 1.0). Tumorous pancreatic ductal adenocarcinoma was distinguished from CTR and PDAC-NT with cutoff values of 1.73 m/s and 1.70 m/s, respectively. CONCLUSIONS: Pancreatic ultrasound THE has high repeatability and provides excellent imaging contrast based on SWS, allowing detection of PDAC without overlap to nontumorous pancreatic tissue.

Authors: C. Burkhardt, H. Tzschatzsch, R. Schmuck, M. Bahra, C. Jurgensen, U. Pelzer, B. Hamm, J. Braun, I. Sack, S. R. Marticorena Garcia

Date Published: 28th Jan 2020

Publication Type: Journal

Powered by
(v.1.11.1)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH