Publications

What is a Publication?
79 Publications visible to you, out of a total of 79

Abstract (Expand)

The mechanisms of organ size control remain poorly understood. A key question is how cells collectively sense the overall status of a tissue. We addressed this problem focusing on mouse liver regeneration. Using digital tissue reconstruction and quantitative image analysis, we found that the apical surface of hepatocytes forming the bile canalicular network expands concomitant with an increase in F-actin and phospho-myosin, to compensate an overload of bile acids. These changes are sensed by the Hippo transcriptional co-activator YAP, which localizes to apical F-actin-rich regions and translocates to the nucleus in dependence of the integrity of the actin cytoskeleton. This mechanism tolerates moderate bile acid fluctuations under tissue homeostasis, but activates YAP in response to sustained bile acid overload. Using an integrated biophysical-biochemical model of bile pressure and Hippo signaling, we explained this behavior by the existence of a mechano-sensory mechanism that activates YAP in a switch-like manner. We propose that the apical surface of hepatocytes acts as a self-regulatory mechano-sensory system that responds to critical levels of bile acids as readout of tissue status.

Authors: K. Meyer, H. Morales-Navarrete, S. Seifert, M. Wilsch-Braeuninger, U. Dahmen, E. M. Tanaka, L. Brusch, Y. Kalaidzidis, M. Zerial

Date Published: 25th Feb 2020

Publication Type: Journal

Abstract (Expand)

The mechanisms of organ size control remain poorly understood. A key question is how cells collectively sense the overall status of a tissue. We addressed this problem focusing on mouse liver regeneration. Using digital tissue reconstruction and quantitative image analysis, we found that the apical surface of hepatocytes forming the bile canalicular network expands concomitant with an increase in F‐actin and phospho‐myosin, to compensate an overload of bile acids. These changes are sensed by the Hippo transcriptional co‐activator YAP, which localizes to apical F‐actin‐rich regions and translocates to the nucleus in dependence of the integrity of the actin cytoskeleton. This mechanism tolerates moderate bile acid fluctuations under tissue homeostasis, but activates YAP in response to sustained bile acid overload. Using an integrated biophysical–biochemical model of bile pressure and Hippo signaling, we explained this behavior by the existence of a mechano‐sensory mechanism that activates YAP in a switch‐like manner. We propose that the apical surface of hepatocytes acts as a self‐regulatory mechano‐sensory system that responds to critical levels of bile acids as readout of tissue status.

Authors: Kirstin Meyer, Hernan Morales‐Navarrete, Sarah Seifert, Michaela Wilsch‐Braeuninger, Uta Dahmen, Elly M Tanaka, Lutz Brusch, Yannis Kalaidzidis, Marino Zerial

Date Published: 24th Feb 2020

Publication Type: Not specified

Abstract

Not specified

Authors: Paul Van Liedekerke, Johannes Neitsch, Tim Johann, Enrico Warmt, Ismael Gonzàlez-Valverde, Stefan Hoehme, Steffen Grosser, Josef Kaes, Dirk Drasdo

Date Published: 1st Feb 2020

Publication Type: Journal

Abstract (Expand)

Research software has become a central asset in academic research. It optimizes existing and enables new research methods, implements and embeds research knowledge, and constitutes an essential research product in itself. Research software must be sustainable in order to understand, replicate, reproduce, and build upon existing research or conduct new research effectively. In other words, software must be available, discoverable, usable, and adaptable to new needs, both now and in the future. Research software therefore requires an environment that supports sustainability. Hence, a change is needed in the way research software development and maintenance are currently motivated, incentivized, funded, structurally and infrastructurally supported, and legally treated. Failing to do so will threaten the quality and validity of research. In this paper, we identify challenges for research software sustainability in Germany and beyond, in terms of motivation, selection, research software engineering personnel, funding, infrastructure, and legal aspects. Besides researchers, we specifically address political and academic decision-makers to increase awareness of the importance and needs of sustainable research software practices. In particular, we recommend strategies and measures to create an environment for sustainable research software, with the ultimate goal to ensure that software-driven research is valid, reproducible and sustainable, and that software is recognized as a first class citizen in research.

Authors: Hartwig Anzt, Felix Bach, Stephan Druskat, Frank Löffler, Axel Loewe, Bernhard Y. Renard, Gunnar Seemann, Alexander Struck, Elke Achhammer, Piush Aggarwal, Franziska Appel, Michael Bader, Lutz Brusch, Christian Busse, Gerasimos Chourdakis, Piotr Wojciech Dabrowski, Peter Ebert, Bernd Flemisch, Sven Friedl, Bernadette Fritzsch, Maximilian D. Funk, Volker Gast, Florian Goth, Jean-Noël Grad, Sibylle Hermann, Florian Hohmann, Stephan Janosch, Dominik Kutra, Jan Linxweiler, Thilo Muth, Wolfgang Peters-Kottig, Fabian Rack, Fabian H.C. Raters, Stephan Rave, Guido Reina, Malte Reißig, Timo Ropinski, Joerg Schaarschmidt, Heidi Seibold, Jan P. Thiele, Benjamin Uekermann, Stefan Unger, Rudolf Weeber

Date Published: 2020

Publication Type: Not specified

Abstract (Expand)

Early disease diagnosis is key to the effective treatment of diseases. Histopathological analysis of human biopsies is the gold standard to diagnose tissue alterations. However, this approach has low resolution and overlooks 3D (three-dimensional) structural changes resulting from functional alterations. Here, we applied multiphoton imaging, 3D digital reconstructions and computational simulations to generate spatially resolved geometrical and functional models of human liver tissue at different stages of non-alcoholic fatty liver disease (NAFLD). We identified a set of morphometric cellular and tissue parameters correlated with disease progression, and discover profound topological defects in the 3D bile canalicular (BC) network. Personalized biliary fluid dynamic simulations predicted an increased pericentral biliary pressure and micro-cholestasis, consistent with elevated cholestatic biomarkers in patients' sera. Our spatially resolved models of human liver tissue can contribute to high-definition medicine by identifying quantitative multiparametric cellular and tissue signatures to define disease progression and provide new insights into NAFLD pathophysiology.

Authors: F. Segovia-Miranda, H. Morales-Navarrete, M. Kucken, V. Moser, S. Seifert, U. Repnik, F. Rost, M. Brosch, A. Hendricks, S. Hinz, C. Rocken, D. Lutjohann, Y. Kalaidzidis, C. Schafmayer, L. Brusch, J. Hampe, M. Zerial

Date Published: 2nd Dec 2019

Publication Type: Not specified

Abstract (Expand)

The secretion of osmolytes into a lumen and thereby caused osmotic water inflow can drive fluid flows in organs without a mechanical pump. Such fluids include saliva, sweat, pancreatic juice and bile. The effects of elevated fluid pressure and the associated mechanical limitations of organ function remain largely unknown since fluid pressure is difficult to measure inside tiny secretory channels in vivo. We consider the pressure profile of the coupled osmolyte-flow problem in a secretory channel with a closed tip and an open outlet. Importantly, the entire lateral boundary acts as a dynamic fluid source, the strength of which self-organizes through feedback from the emergent pressure solution itself. We derive analytical solutions and compare them to numerical simulations of the problem in three-dimensional space. The theoretical results reveal a phase boundary in a four-dimensional parameter space separating the commonly considered regime with steady flow all along the channel, here termed “wet-tip” regime, from a “dry-tip” regime suffering ceased flow downstream from the closed tip. We propose a relation between the predicted phase boundary and the onset of cholestasis, a pathological liver condition with reduced bile outflow. The phase boundary also sets an intrinsic length scale for the channel which could act as a length sensor during organ growth.

Authors: Oleksandr Ostrenko, Jochen Hampe, Lutz Brusch

Date Published: 1st Dec 2019

Publication Type: Not specified

Abstract (Expand)

The Hedgehog (Hh) and Wnt/β-Catenin (Wnt) cascades are morphogen pathways whose pronounced influence on adult liver metabolism has been identified in recent years. How both pathways communicate and control liver metabolic functions are largely unknown. Detecting core components of Wnt and Hh signaling and mathematical modeling showed that both pathways in healthy liver act largely complementary to each other in the pericentral (Wnt) and the periportal zone (Hh) and communicate mainly by mutual repression. The Wnt/Hh module inversely controls the spatiotemporal operation of various liver metabolic pathways, as revealed by transcriptome, proteome, and metabolome analyses. Shifting the balance to Wnt (activation) or Hh (inhibition) causes pericentralization and periportalization of liver functions, respectively. Thus, homeostasis of the Wnt/Hh module is essential for maintaining proper liver metabolism and to avoid the development of certain metabolic diseases. With caution due to minor species-specific differences, these conclusions may hold for human liver as well.

Authors: Erik Kolbe, Susanne Aleithe, Christiane Rennert, Luise Spormann, Fritzi Ott, David Meierhofer, Robert Gajowski, Claus Stöpel, Stefan Hoehme, Michael Kücken, Lutz Brusch, Michael Seifert, Witigo von Schoenfels, Clemens Schafmayer, Mario Brosch, Ute Hofmann, Georg Damm, Daniel Seehofer, Jochen Hampe, Rolf Gebhardt, Madlen Matz-Soja

Date Published: 1st Dec 2019

Publication Type: Not specified

Abstract (Expand)

The I148M variant of the Patatin-like phospholipase domain-containing 3 (PNPLA3) protein is associated with an increased risk for liver inflammation and hepatocellular carcinoma (HCC), but the underlying mechanism is unknown. We hypothesized that enhanced CXC chemokine secretion mediates hepatic inflammation that accelerates development of HCC. Expandable primary human (upcyte(R)) hepatocytes and human PLC/PRF/5 hepatoma cells were lentivirally transduced with both PNPLA3 I148M variants and stimulated with lipids. Cytokine levels in culture supernatant and patient sera (n = 80) were analyzed by ELISA. Supernatants were assessed in transmigration experiments, tube formation, and proliferation assays. In vitro, lipid stimulation of transduced hepatocytes dose-dependently induced the production of interleukin-8 and CXCL1 in hepatocytes carrying the PNPLA3 148M variant. In line, sera from PNPLA3 148M-positive patients with alcoholic liver cirrhosis contained higher levels of interleukin-8 and CXCL1 than patients with wild-type PNPLA3. Supernatants from lipid-stimulated hepatocytes with the PNPLA3 148M variant induced enhanced migration of white blood cells, angiogenesis, and cell proliferation in comparison with supernatants from wild-type hepatocytes via CXC receptors 1 and 2. Increased production of interleukin-8 and CXCL1 by hepatocytes carrying the PNPLA3 148M variant contributes to a pro-inflammatory and tumorigenic milieu in patients with alcoholic liver disease. KEY MESSAGES: The PNPLA3 148M variant is associated with cirrhosis and hepatocellular carcinoma. Lipid stimulation of hepatocytes with this variant induces IL-8 and CXCL1. Supernatants from hepatocytes with this variant promote migration and angiogenesis. Sera from patients with this variant contained enhanced levels of IL-8 and CXCL1. The PNPLA3 148M variant contributes to a tumorigenic milieu via IL-8 and CXCL1.

Authors: H. D. Nischalke, P. Lutz, E. Bartok, B. Kramer, B. Langhans, R. Frizler, T. Berg, J. Hampe, S. Buch, C. Datz, F. Stickel, G. Hartmann, C. P. Strassburg, J. Nattermann, U. Spengler

Date Published: 23rd Oct 2019

Publication Type: Journal

Abstract (Expand)

BACKGROUND AND AIMS: Carriage of rs738409:G in patatin-like phospholipase domain containing 3 (PNPLA3) is associated with an increased risk for developing alcohol-related cirrhosis and hepatocellular carcinoma (HCC). Recently, rs72613567:TA in hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) was shown to be associated with a reduced risk for developing alcohol-related liver disease and to attenuate the risk associated with carriage of PNPLA3 rs738409:G. This study explores the risk associations between these two genetic variants and the development of alcohol-related cirrhosis and HCC. APPROACH AND RESULTS: Variants in HSD17B13 and PNPLA3 were genotyped in 6,171 participants, including 1,031 with alcohol-related cirrhosis and HCC, 1,653 with alcohol-related cirrhosis without HCC, 2,588 alcohol misusers with no liver disease, and 899 healthy controls. Genetic associations with the risks for developing alcohol-related cirrhosis and HCC were determined using logistic regression analysis. Carriage of HSD17B13 rs72613567:TA was associated with a lower risk for developing both cirrhosis (odds ratio [OR], 0.79; 95% confidence interval [CI], 0.72-0.88; P = 8.13 x 10(-6) ) and HCC (OR, 0.77; 95% CI, 0.68-0.89; P = 2.27 x 10(-4) ), whereas carriage of PNPLA3 rs738409:G was associated with an increased risk for developing cirrhosis (OR, 1.70; 95% CI, 1.54-1.88; P = 1.52 x 10(-26) ) and HCC (OR, 1.77; 95% CI, 1.58-1.98; P = 2.31 x 10(-23) ). These associations remained significant after adjusting for age, sex, body mass index, type 2 diabetes, and country. Carriage of HSD17B13 rs72613567:TA attenuated the risk for developing cirrhosis associated with PNPLA3 rs738409:G in both men and women, but the protective effect against the subsequent development of HCC was only observed in men (ORallelic , 0.75; 95% CI, 0.64-0.87; P = 1.72 x 10(-4) ). CONCLUSIONS: Carriage of variants in PNPLA3 and HSD17B13 differentially affect the risk for developing advanced alcohol-related liver disease. A genotypic/phenotypic risk score might facilitate earlier diagnosis of HCC in this population.

Authors: F. Stickel, P. Lutz, S. Buch, H. D. Nischalke, I. Silva, V. Rausch, J. Fischer, K. H. Weiss, D. Gotthardt, J. Rosendahl, A. Marot, M. Elamly, M. Krawczyk, M. Casper, F. Lammert, T. W. M. Buckley, A. McQuillin, U. Spengler, F. Eyer, A. Vogel, S. Marhenke, J. von Felden, H. Wege, R. Sharma, S. Atkinson, A. Franke, S. Nehring, V. Moser, C. Schafmayer, L. Spahr, C. Lackner, R. E. Stauber, A. Canbay, A. Link, L. Valenti, J. I. Grove, G. P. Aithal, J. U. Marquardt, W. Fateen, S. Zopf, J. F. Dufour, J. Trebicka, C. Datz, P. Deltenre, S. Mueller, T. Berg, J. Hampe, M. Y. Morgan

Date Published: 21st Oct 2019

Publication Type: Journal

Abstract (Expand)

A quantitative understanding of complex biological systems such as tissues requires reconstructing the structure of the different components of the system. Fluorescence microscopy provides the means to visualize simultaneously several tissue components. However, it can be time consuming and is limited by the number of fluorescent markers that can be used. In this study, we describe a toolbox of algorithms based on convolutional neural networks for the prediction of 3D tissue structures by learning features embedded within single-marker images. As proof of principle, we aimed to predict the network of bile canaliculi (BC) in liver tissue using images of the cortical actin mesh as input. The actin meshwork has a characteristic organization in specific cellular domains, such as BC. However, the use of manually selected features from images of actin is not sufficient to properly reconstruct BC structure. Our deep learning framework showed a remarkable accuracy for the prediction of BC network and was successfully adapted (i.e. transfer learning) to predict the sinusoidal network. This approach allows for a complete reconstruction of tissue microarchitecture using a single fluorescent marker.

Authors: Hernan Morales-Navarrete, Fabian Segovia-Miranda, Marino Zerial, Yannis Kalaidzidis

Date Published: 1st Sep 2019

Publication Type: InProceedings

Abstract (Expand)

Functional tissue architecture originates by self-assembly of distinct cell types, following tissue-specific rules of cell-cell interactions. In the liver, a structural model of the lobule was pioneered by Elias in 1949. This model, however, is in contrast with the apparent random 3D arrangement of hepatocytes. Since then, no significant progress has been made to derive the organizing principles of liver tissue. To solve this outstanding problem, we computationally reconstructed 3D tissue geometry from microscopy images of mouse liver tissue and analyzed it applying soft-condensed-matter-physics concepts. Surprisingly, analysis of the spatial organization of cell polarity revealed that hepatocytes are not randomly oriented but follow a long-range liquid-crystal order. This does not depend exclusively on hepatocytes receiving instructive signals by endothelial cells, since silencing Integrin-beta1 disrupted both liquid-crystal order and organization of the sinusoidal network. Our results suggest that bi-directional communication between hepatocytes and sinusoids underlies the self-organization of liver tissue.

Authors: H. Morales-Navarrete, H. Nonaka, A. Scholich, F. Segovia-Miranda, W. de Back, K. Meyer, R. L. Bogorad, V. Koteliansky, L. Brusch, Y. Kalaidzidis, F. Julicher, B. M. Friedrich, M. Zerial

Date Published: 17th Jun 2019

Publication Type: Not specified

Abstract (Expand)

Many cellular organelles, including endosomes, show compartmentalization into distinct functional domains, which however cannot be resolved by diffraction-limited light microscopy. Single molecule localization microscopy (SMLM) offers nanoscale resolution but data interpretation is often inconclusive when the ultrastructural context is missing. Correlative light electron microscopy (CLEM) combining SMLM with electron microscopy (EM) enables correlation of functional sub-domains of organelles in relation to their underlying ultrastructure at nanometer resolution. However, the specific demands for EM sample preparation and the requirements for fluorescent single-molecule photo-switching are opposed. Here, we developed a novel superCLEM workflow that combines triple-colour SMLM (dSTORM & PALM) and electron tomography using semi-thin Tokuyasu thawed cryosections. We applied the superCLEM approach to directly visualize nanoscale compartmentalization of endosomes in HeLa cells. Internalized, fluorescently labelled Transferrin and EGF were resolved into morphologically distinct domains within the same endosome. We found that the small GTPase Rab5 is organized in nano-domains on the globular part of early endosomes. The simultaneous visualization of several proteins in functionally distinct endosomal sub-compartments demonstrates the potential of superCLEM to link the ultrastructure of organelles with their molecular organization at nanoscale resolution. This article is protected by copyright. All rights reserved.

Authors: C. Franke, U. Repnik, S. Segeletz, N. Brouilly, Y. Kalaidzidis, J. M. Verbavatz, M. Zerial

Date Published: 17th Jun 2019

Publication Type: Not specified

Abstract (Expand)

High-content screens (HCS) using chemical and genomic interference based on light microscopy and quantitative image analysis yielded a large amount of multi-parametric (MP) phenotypic data. Such data-sets hold great promise for the understanding of cellular mechanisms by systems biology. However, extracting functional information from data-sets, such as links between cellular processes and the functions of unknown genes, remains challenging. The limitation of HCS analysis lies in the complexity of cellular organization. Here, we assumed that cellular processes have a modular structure, and deconvolved the MP data into separate signals from different cellular modules by Blind Source Separation. We applied a combination of quantitative MP image analysis (QMPIA) and Independent Component Analysis (ICA) to an image-based HCS of endocytosis, the process whereby cells uptake molecules from the outside and distribute them to different sub-cellular organelles. We named our approach Independent Phenotypes Analysis (IPA). Phenotypic traits revealed by IPA are interpretable in terms of perturbation of specific endosomal populations (e.g. specific cargo, specific molecular markers) and of specific functional modules (early stages of endocytosis, recycling, cell cycle, etc.). The profile of perturbation of each gene in such basic phenotypic coordinates intrinsically suggest its possible mode of action.

Authors: Unknown, Kseniia Nikitina, Sandra Segeletz, Michael Kuhn, Yannis Kalaidzidis, Marino Zerial

Date Published: 2019

Publication Type: InProceedings

Abstract (Expand)

A small proportion of lean patients develop non-alcoholic fatty liver disease (NAFLD). We aimed to report the histological picture of lean NAFLD in comparison to overweight and obese NAFLD patients. Biopsy and clinical data from 466 patients diagnosed with NAFLD were stratified to groups according to body mass index (BMI): lean (BMI </= 25.0 kg/m(2), n confirmed to be appropriate = 74), overweight (BMI > 25.0 </= 30.0 kg/m(2), n = 242) and obese (BMI > 30.0 kg/m(2), n = 150). Lean NAFLD patients had a higher rate of lobular inflammation compared to overweight patients (12/74; 16.2% vs. 19/242; 7.9%; p = 0.011) but were similar to obese patients (25/150; 16.7%). Ballooning was observed in fewer overweight patients (38/242; 15.7%) compared to lean (19/74; 25.7%; p = 0.014) and obese patients (38/150; 25.3%; p = 0.006). Overweight patients had a lower rate of portal and periportal fibrosis (32/242; 13.2%) than lean (19/74; 25.7%; p = 0.019) and obese patients (37/150; 24.7%; p = 0.016). The rate of cirrhosis was higher in lean patients (6/74; 8.1%) compared to overweight (4/242; 1.7%; p = 0.010) and obese patients (3/150; 2.0% p = 0.027). In total, 60/466; 12.9% patients were diagnosed with non-alcoholic steatohepatitis (NASH). The rate of NASH was higher in lean (14/74; 18.9% p = 0.01) and obese (26/150; 17.3%; p = 0.007) compared to overweight patients (20/242; 8.3%)). Among lean patients, fasting glucose, INR and use of thyroid hormone replacement therapy were independent predictors of NASH in a multivariate model. Lean NAFLD patients were characterized by a severe histological picture similar to obese patients but are more progressed compared to overweight patients. Fasting glucose, international normalized ratio (INR) and the use of thyroid hormone replacement may serve as indicators for NASH in lean patients.

Authors: L. Denkmayr, A. Feldman, L. Stechemesser, S. K. Eder, S. Zandanell, M. Schranz, M. Strasser, U. Huber-Schonauer, S. Buch, J. Hampe, B. Paulweber, C. Lackner, H. Haufe, K. Sotlar, C. Datz, E. Aigner

Date Published: 17th Dec 2018

Publication Type: Journal

Abstract

Not specified

Authors: Hernan Morales-Navarrete, Hidenori Nonaka, Andre Scholich, Fabian Segovia-Miranda, Walter de Back, Kirstin Meyer, Roman L Bogorad, Victor Koteliansky, Lutz Brusch, Yannis Kalaidzidis, Frank Julicher, Benjamin M. Friedrich, Marino Zerial

Date Published: 13th Dec 2018

Publication Type: Not specified

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH