Publications

What is a Publication?
10 Publications visible to you, out of a total of 10

Abstract (Expand)

Non-alcoholic fatty liver disease (NAFLD) is a common metabolic dysfunction leading to hepatic steatosis. However, NAFLD's global impact on the liver lipidome is poorly understood. Using high-resolution shotgun mass spectrometry, we quantified the molar abundance of 316 species from 22 major lipid classes in liver biopsies of 365 patients, including non-steatotic patients with normal or excessive weight, patients diagnosed with NAFL (non-alcoholic fatty liver) or NASH (non-alcoholic steatohepatitis), and patients bearing common mutations of NAFLD-related protein factors. We confirmed the progressive accumulation of di- and tri- acylglycerols and cholesteryl esters in the liver of NAFL and NASH patients, while the bulk composition of glycerophospho- and sphingolipids remained unchanged. Further stratification by biclustering analysis identified sphingomyelin species comprising n24:2 fatty acid moieties as membrane lipid markers of NAFLD. Normalized relative abundance of sphingomyelins SM 43:3;2 and SM 43:1;2 containing n24:2 and n24:0 fatty acid moieties, respectively, showed opposite trends during NAFLD progression and distinguished NAFL and NASH lipidomes from the lipidome of non-steatoic livers. Together with several glycerophospholipids containing a C22:6 fatty acid moiety, these lipids serve as markers of early and advanced stages of NAFL.

Authors: Olga Vvedenskaya, Tim Daniel Rose, Oskar Knittelfelder, Alessandra Palladini, Judith Andrea Heidrun Wodke, Kai Schumann, Jacobo Miranda Ackerman, Yuting Wang, Canan Has, Mario Brosch, Veera Raghavan Thangapandi, Stephan Buch, Thomas Züllig, Jürgen Hartler, Harald C. Köfeler, Christoph Röcken, Ünal Coskun, Edda Klipp, Witigo von Schoenfels, Justus Gross, Clemens Schafmayer, Jochen Hampe, Josch Konstantin Pauling, Andrej Shevchenko

Date Published: 1st Aug 2021

Publication Type: Journal

Abstract (Expand)

OBJECTIVE: The rs641738C>T variant located near the membrane-bound O-acyltransferase domain containing 7 (MBOAT7) locus is associated with fibrosis in liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcohol-related liver disease, hepatitis B and C. We aim to understand the mechanism by which the rs641738C>T variant contributes to pathogenesis of NAFLD. DESIGN: Mice with hepatocyte-specific deletion of MBOAT7 (Mboat7(Deltahep)) were generated and livers were characterised by histology, flow cytometry, qPCR, RNA sequencing and lipidomics. We analysed the association of rs641738C>T genotype with liver inflammation and fibrosis in 846 NAFLD patients and obtained genotype-specific liver lipidomes from 280 human biopsies. RESULTS: Allelic imbalance analysis of heterozygous human liver samples pointed to lower expression of the MBOAT7 transcript on the rs641738C>T haplotype. Mboat7(Deltahep) mice showed spontaneous steatosis characterised by increased hepatic cholesterol ester content after 10 weeks. After 6 weeks on a high fat, methionine-low, choline-deficient diet, mice developed increased hepatic fibrosis as measured by picrosirius staining (p<0.05), hydroxyproline content (p<0.05) and transcriptomics, while the inflammatory cell populations and inflammatory mediators were minimally affected. In a human biopsied NAFLD cohort, MBOAT7 rs641738C>T was associated with fibrosis (p=0.004) independent of the presence of histological inflammation. Liver lipidomes of Mboat7(Deltahep) mice and human rs641738TT carriers with fibrosis showed increased total lysophosphatidylinositol levels. The altered lysophosphatidylinositol and phosphatidylinositol subspecies in MBOAT7(Deltahep) livers and human rs641738TT carriers were similar. CONCLUSION: Mboat7 deficiency in mice and human points to an inflammation-independent pathway of liver fibrosis that may be mediated by lipid signalling and a potentially targetable treatment option in NAFLD.

Authors: V. R. Thangapandi, O. Knittelfelder, M. Brosch, E. Patsenker, O. Vvedenskaya, S. Buch, S. Hinz, A. Hendricks, M. Nati, A. Herrmann, D. R. Rekhade, T. Berg, M. Matz-Soja, K. Huse, E. Klipp, J. K. Pauling, J. A. Wodke, J. Miranda Ackerman, M. V. Bonin, E. Aigner, C. Datz, W. von Schonfels, S. Nehring, S. Zeissig, C. Rocken, A. Dahl, T. Chavakis, F. Stickel, A. Shevchenko, C. Schafmayer, J. Hampe, P. Subramanian

Date Published: 26th Jun 2020

Publication Type: Journal

Abstract (Expand)

The Hedgehog (Hh) and Wnt/β-Catenin (Wnt) cascades are morphogen pathways whose pronounced influence on adult liver metabolism has been identified in recent years. How both pathways communicate and control liver metabolic functions are largely unknown. Detecting core components of Wnt and Hh signaling and mathematical modeling showed that both pathways in healthy liver act largely complementary to each other in the pericentral (Wnt) and the periportal zone (Hh) and communicate mainly by mutual repression. The Wnt/Hh module inversely controls the spatiotemporal operation of various liver metabolic pathways, as revealed by transcriptome, proteome, and metabolome analyses. Shifting the balance to Wnt (activation) or Hh (inhibition) causes pericentralization and periportalization of liver functions, respectively. Thus, homeostasis of the Wnt/Hh module is essential for maintaining proper liver metabolism and to avoid the development of certain metabolic diseases. With caution due to minor species-specific differences, these conclusions may hold for human liver as well.

Authors: Erik Kolbe, Susanne Aleithe, Christiane Rennert, Luise Spormann, Fritzi Ott, David Meierhofer, Robert Gajowski, Claus Stöpel, Stefan Hoehme, Michael Kücken, Lutz Brusch, Michael Seifert, Witigo von Schoenfels, Clemens Schafmayer, Mario Brosch, Ute Hofmann, Georg Damm, Daniel Seehofer, Jochen Hampe, Rolf Gebhardt, Madlen Matz-Soja

Date Published: 1st Dec 2019

Publication Type: Not specified

Abstract

Not specified

Authors: Mario Brosch, Kathrin Kattler, Alexander Herrmann, Witigo von Schönfels, Karl Nordström, Daniel Seehofer, Georg Damm, Thomas Becker, Sebastian Zeissig, Sophie Nehring, Fabian Reichel, Vincent Moser, Raghavan Veera Thangapandi, Felix Stickel, Gustavo Baretton, Christoph Röcken, Michael Muders, Madlen Matz-Soja, Michael Krawczak, Gilles Gasparoni, Hella Hartmann, Andreas Dahl, Clemens Schafmayer, Jörn Walter, Jochen Hampe

Date Published: 1st Dec 2018

Publication Type: Not specified

Abstract (Expand)

A deeper epigenomic understanding of spatial organization of cells in human tissues is an important challenge. Here we report the first combined positional analysis of transcriptomes and methylomes across three micro-dissected zones (pericentral, intermediate and periportal) of human liver. We identify pronounced anti-correlated transcriptional and methylation gradients including a core of 271 genes controlling zonated metabolic and morphogen networks and observe a prominent porto-central gradient of DNA methylation at binding sites of 46 transcription factors. The gradient includes an epigenetic and transcriptional Wnt signature supporting the concept of a pericentral hepatocyte regeneration pathway under steady-state conditions. While donors with non-alcoholic fatty liver disease show consistent gene expression differences corresponding to the severity of the disease across all zones, the relative zonated gene expression and DNA methylation patterns remain unchanged. Overall our data provide a wealth of new positional insights into zonal networks controlled by epigenetic and transcriptional gradients in human liver.

Authors: Mario Brosch, Kathrin Kattler, Alexander Herrmann, Witigo von Schönfels, Karl Nordström, Daniel Seehofer, Georg Damm, Thomas Becker, Sebastian Zeissig, Sophie Nehring, Fabian Reichel, Vincent Moser, Raghavan Veera Thangapandi, Felix Stickel, Gustavo Baretton, Christoph Röcken, Michael Muders, Madlen Matz-Soja, Michael Krawczak, Gilles Gasparoni, Hella Hartmann, Andreas Dahl, Clemens Schafmayer, Jörn Walter, Jochen Hampe

Date Published: 1st Dec 2018

Publication Type: Not specified

Abstract (Expand)

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder in industrialized countries. Nonalcoholic steatohepatitis is the fastest growing cause for liver failure. Bariatric surgery represents a treatment option for NAFLD with an established effect on liver histology. OBJECTIVES: We aimed to assess the impact of bariatric surgery on standardized liver histology using the NAFLD activity score. SETTING: Retrospective comparison of metabolic data before and after bariatric surgery and comparison of sleeve gastrectomy and Roux-en-Y gastric bypass. The study was performed in an academic center, the university hospital Schleswig-Holstein in Kiel, Germany. METHODS: Between 2009 and 2012, bariatric surgery was performed in 257 patients according to the national guidelines, and a liver biopsy was obtained in 150 of these patients during surgery. A follow-up biopsy was available in 53 of these patients at a median of 192 days. Liver histology was analyzed using the NAFLD activity score. In this subgroup of 53 patients an analysis of the metabolic improvement after bariatric surgery and a comparative analysis between the 2 different operative procedures was performed. RESULTS: The study cohort showed improvement of preoperative pathologic liver histology findings after operative procedures took place. Both surgery methods improved the NAFLD activity score significantly, all improvement -2.0 (confidence interval -2.5 to -1.0; P < .001); Roux-en-Y gastric bypass, improvement -1.0 (confidence interval -2.0 to -.0; P=.038); sleeve gastrectomy, improvement -2.5 (confidence interval -3.5 to -1.5; P < .001). No differences were found with regard to histologic recovery between gastric bypass and sleeve gastrectomy (P = .22). CONCLUSIONS: Bariatric surgery significantly improves NAFLD.

Authors: W. von Schonfels, J. H. Beckmann, M. Ahrens, A. Hendricks, C. Rocken, S. Szymczak, J. Hampe, C. Schafmayer

Date Published: 28th Aug 2018

Publication Type: Not specified

Abstract (Expand)

OBJECTIVE: Homozygous alpha1-antitrypsin (AAT) deficiency increases the risk for developing cirrhosis, whereas the relevance of heterozygous carriage remains unclear. Hence, we evaluated the impact of the two most relevant AAT variants ('Pi*Z' and 'Pi*S'), present in up to 10% of Caucasians, on subjects with non-alcoholic fatty liver disease (NAFLD) or alcohol misuse. DESIGN: We analysed multicentric case-control cohorts consisting of 1184 people with biopsy-proven NAFLD and of 2462 people with chronic alcohol misuse, both cohorts comprising cases with cirrhosis and controls without cirrhosis. Genotyping for the Pi*Z and Pi*S variants was performed. RESULTS: The Pi*Z variant presented in 13.8% of patients with cirrhotic NAFLD but only in 2.4% of counterparts without liver fibrosis (p<0.0001). Accordingly, the Pi*Z variant increased the risk of NAFLD subjects to develop cirrhosis (adjusted OR=7.3 (95% CI 2.2 to 24.8)). Likewise, the Pi*Z variant presented in 6.2% of alcohol misusers with cirrhosis but only in 2.2% of alcohol misusers without significant liver injury (p<0.0001). Correspondingly, alcohol misusers carrying the Pi*Z variant were prone to develop cirrhosis (adjusted OR=5.8 (95% CI 2.9 to 11.7)). In contrast, the Pi*S variant was not associated with NAFLD-related cirrhosis and only borderline with alcohol-related cirrhosis (adjusted OR=1.47 (95% CI 0.99 to 2.19)). CONCLUSION: The Pi*Z variant is the hitherto strongest single nucleotide polymorphism-based risk factor for cirrhosis in NAFLD and alcohol misuse, whereas the Pi*S variant confers only a weak risk in alcohol misusers. As 2%-4% of Caucasians are Pi*Z carriers, this finding should be considered in genetic counselling of affected individuals.

Authors: P. Strnad, S. Buch, K. Hamesch, J. Fischer, J. Rosendahl, R. Schmelz, S. Brueckner, M. Brosch, C. V. Heimes, V. Woditsch, D. Scholten, H. D. Nischalke, S. Janciauskiene, M. Mandorfer, M. Trauner, M. J. Way, A. McQuillin, M. C. Reichert, M. Krawczyk, M. Casper, F. Lammert, F. Braun, W. von Schonfels, S. Hinz, G. Burmeister, C. Hellerbrand, A. Teufel, A. Feldman, J. M. Schattenberg, H. Bantel, A. Pathil, M. Demir, J. Kluwe, T. Boettler, M. Ridinger, N. Wodarz, M. Soyka, M. Rietschel, F. Kiefer, T. Weber, S. Marhenke, A. Vogel, H. Hinrichsen, A. Canbay, M. Schlattjan, K. Sosnowsky, C. Sarrazin, J. von Felden, A. Geier, P. Deltenre, B. Sipos, C. Schafmayer, M. Nothnagel, E. Aigner, C. Datz, F. Stickel, M. Y. Morgan, J. Hampe, T. Berg, C. Trautwein

Date Published: 3rd Aug 2018

Publication Type: Journal

Abstract (Expand)

Background: The extent of resection and the frequency of liver surgery have increased over the past decades, enabled by improved haemostasis provided by electrosurgical liver dissection. Because extensive liver surgery is still associated with lethal complications, further optimisation of the technique and a better molecular understanding of hepatic wound healing and regeneration are needed. Systematic studies and a mouse model reflecting the clinical reality of liver surgery are lacking. Methods: We performed liver resection in mice with a monopolar electrocautery device in comparison to the classical en-bloc ligation method. Regeneration was assessed using liver weight and BrDU immunohistochemistry after sacrifice and non-invasively using micro computed tomography (µCT). Results: Mortality in the electrosurgical model was similar to the ligation method given an identical extent of resection. Regeneration of liver proceeded significantly faster in the electrosurgical group: Liver weight was 25.6% higher at sacrifice after 168h (p=0.0003). Concordantly, both µCT analysis (22.6% higher liver volume at 168h, p=0.008) and BrDU staining (71.4% higher proliferation at 72h, p=0.0005) indicated superior regeneration of liver after electrosurgical partial hepatectomy. Conclusions: The mode of liver resection has a profound impact on regeneration and should be studied molecularly using the presented novel model of electrosurgical liver resection.

Authors: W. von Schonfels, Clemens Schafmayer, Jochen Hampe

Date Published: 27th Jan 2018

Publication Type: Not specified

Abstract (Expand)

The partial hepatectomy (PH) model is widely used to study liver regeneration. Currently, the extent of regeneration is analyzed by measuring the weight of the liver post-mortem or by magnetic resonance imaging. In this study we aimed to determine whether liver volume gain can be accurately measured using micro-computed tomography (microCT). Approximately 42% of the liver was removed by ligation in C57BL/6 N mice. Mice were divided into two study groups. In group 1 conventional characterization of liver hyperplasia was performed by weighing the liver post-mortem. In group 2, liver volume gain was determined by microCT volume estimation. MicroCT results showed equivalent regeneration rates compared with the conventional method without the need to mathematically determine initial liver weights before PH. This parameter is strongly influenced by the age, strain and sex of the mice. In addition non-invasive microCT determination of volume gain over multiple time-points using the same animal reduces the number of animals needing to be used (in line with the 3R principle of replacement, reduction and refinement).

Authors: O. M. Will, T. Damm, G. M. Campbell, W. von Schonfells, Y. Acil, M. Will, A. Chalaris-Rissmann, M. Ayna, C. Drucker, C. C. Gluer

Date Published: 8th Dec 2016

Publication Type: Not specified

Abstract (Expand)

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder in industrialized countries. Mouse models of NAFLD have been used in studies of pathogenesis and treatment, and have certain features of the human disease. We performed a systematic transcriptome-wide analysis of liver tissues from patients at different stages of NAFLD progression (ranging from healthy obese individuals to those with steatosis), as well as rodent models of NAFLD, to identify those that most closely resemble human disease progression in terms of gene expression patterns. METHODS: We performed a systematic evaluation of genome-wide messenger RNA expression using liver tissues collected from mice fed a standard chow diet (controls) and 9 mouse models of NAFLD: mice on a high-fat diet (with or without fructose), mice on a Western-type diet, mice on a methionine- and choline-deficient diet, mice on a high-fat diet given streptozotocin, and mice with disruption of Pten in hepatocytes. We compared gene expression patterns with those of liver tissues from 25 patients with nonalcoholic steatohepatitis (NASH), 27 patients with NAFLD, 15 healthy obese individuals, and 39 healthy nonobese individuals (controls). Liver samples were obtained from patients undergoing liver biopsy for suspected NAFLD or NASH, or during liver or bariatric surgeries. Data sets were analyzed using the limma R-package. Overlap of functional profiles was analyzed by gene set enrichment analysis profiles. RESULTS: We found differences between human and mouse transcriptomes to be significantly larger than differences between disease stages or models. Of the 65 genes with significantly altered expression in patients with NASH and 177 genes with significantly altered expression in patients with NAFLD, compared with controls, only 1-18 of these genes also differed significantly in expression between mouse models of NAFLD and control mice. However, expression of genes that regulate pathways associated with the development of NAFLD were altered in some mouse models (such as pathways associated with lipid metabolism). On a pathway level, gene expression patterns in livers of mice on the high-fat diet were associated more closely with human fatty liver disease than other models. CONCLUSIONS: In comparing gene expression profiles between liver tissues from different mouse models of NAFLD and patients with different stages of NAFLD, we found very little overlap. Our data set is available for studies of pathways that contribute to the development of NASH and NAFLD and selection of the most applicable mouse models (http://www.nash-profiler.com).

Authors: A. Teufel, T. Itzel, W. Erhart, M. Brosch, X. Y. Wang, Y. O. Kim, W. von Schonfels, A. Herrmann, S. Bruckner, F. Stickel, J. F. Dufour, T. Chavakis, C. Hellerbrand, R. Spang, T. Maass, T. Becker, S. Schreiber, C. Schafmayer, D. Schuppan, J. Hampe

Date Published: 19th Jun 2016

Publication Type: Not specified

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH