Publications

What is a Publication?
81 Publications visible to you, out of a total of 81

Abstract (Expand)

BACKGROUND: Although metabolism is profoundly altered in human liver cancer, the extent to which experimental models, e.g. cell lines, mimic those alterations is unresolved. Here, we aimed to determine the resemblance of hepatocellular carcinoma (HCC) cell lines to human liver tumours, specifically in the expression of deregulated metabolic targets in clinical tissue samples. METHODS: We compared the overall gene expression profile of poorly-differentiated (HLE, HLF, SNU-449) to well-differentiated (HUH7, HEPG2, HEP3B) HCC cell lines in three publicly available microarray datasets. Three thousand and eighty-five differentially expressed genes in >/=2 datasets (P < 0.05) were used for pathway enrichment and gene ontology (GO) analyses. Further, we compared the topmost gene expression, pathways, and GO from poorly differentiated cell lines to the pattern from four human HCC datasets (623 tumour tissues). In well- versus poorly differentiated cell lines, and in representative models HLE and HUH7 cells, we specifically assessed the expression pattern of 634 consistently deregulated metabolic genes in human HCC. These data were complemented by quantitative PCR, proteomics, metabolomics and assessment of response to thirteen metabolism-targeting compounds in HLE versus HUH7 cells. RESULTS: We found that poorly-differentiated HCC cells display upregulated MAPK/RAS/NFkB signaling, focal adhesion, and downregulated complement/coagulation cascade, PPAR-signaling, among pathway alterations seen in clinical tumour datasets. In HLE cells, 148 downregulated metabolic genes in liver tumours also showed low gene/protein expression - notably in fatty acid beta-oxidation (e.g. ACAA1/2, ACADSB, HADH), urea cycle (e.g. CPS1, ARG1, ASL), molecule transport (e.g. SLC2A2, SLC7A1, SLC25A15/20), and amino acid metabolism (e.g. PHGDH, PSAT1, GOT1, GLUD1). In contrast, HUH7 cells showed a higher expression of 98 metabolic targets upregulated in tumours (e.g. HK2, PKM, PSPH, GLUL, ASNS, and fatty acid synthesis enzymes ACLY, FASN). Metabolomics revealed that the genomic portrait of HLE cells co-exist with profound reliance on glutamine to fuel tricarboxylic acid cycle, whereas HUH7 cells use both glucose and glutamine. Targeting glutamine pathway selectively suppressed the proliferation of HLE cells. CONCLUSIONS: We report a yet unappreciated distinct expression pattern of clinically-relevant metabolic genes in HCC cell lines, which could enable the identification and therapeutic targeting of metabolic vulnerabilities at various liver cancer stages.

Authors: Z. C. Nwosu, N. Battello, M. Rothley, W. Pioronska, B. Sitek, M. P. Ebert, U. Hofmann, J. Sleeman, S. Wolfl, C. Meyer, D. A. Megger, S. Dooley

Date Published: 5th Sep 2018

Publication Type: Not specified

Abstract (Expand)

MicroRNA (miRNA)-mediated gene regulation contributes to liver pathophysiology, including hepatic stellate cell (HSC) activation and fibrosis progression. Here, we investigated the role of miR-942 in human liver fibrosis. The expression of miR-942, HSC activation markers, transforming growth factor-beta pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI), as well as collagen deposition, were investigated in 100 liver specimens from patients with varying degree of hepatitis B virus (HBV)-related fibrosis. Human primary HSCs and the immortalized cell line (LX2 cells) were used for functional studies. We found that miR-942 expression was upregulated in activated HSCs and correlated inversely with BAMBI expression in liver fibrosis progression. Transforming growth factor beta (TGF-beta) and lipopolyssacharide (LPS), two major drivers of liver fibrosis and inflammation, induce miR-942 expression in HSCs via Smad2/3 respective NF-kappaB/p50 binding to the miR-942 promoter. Mechanistically, the induced miR-942 degrades BAMBI mRNA in HSCs, thereby sensitizing the cells for fibrogenic TGF-beta signaling and also partly mediates LPS-induced proinflammatory HSC fate. In conclusion, the TGF-beta and LPS-induced miR-942 mediates HSC activation through downregulation of BAMBI in human liver fibrosis. Our study provides new insights on the molecular mechanism of HSC activation and fibrosis.

Authors: L. Tao, D. Xue, D. Shen, W. Ma, J. Zhang, X. Wang, W. Zhang, L. Wu, K. Pan, Y. Yang, Z. C. Nwosu, S. Dooley, E. Seki, C. Liu

Date Published: 12th Aug 2018

Publication Type: Not specified

Abstract (Expand)

Upon liver intoxication with malnutrition or high-fat diet feeding, fibrinogen is synthesized by hepatocytes and secreted into the blood in human and mouse. Its primary function is to occlude blood vessels upon damage and thereby stop excessive bleeding. High fibrinogen levels may contribute to the development of pathological thrombosis, which is one mechanism linking fatty liver disease with cardiovascular disease. Our previous results present ERRgamma as key regulator of hepatocytic fibrinogen gene expression in human. In a therapeutic approach, we now tested ERRgamma inverse agonist GSK5182 as regulator of fibrinogen levels in mouse hyperfibrinogenemia caused by diet-induced obesity and in mouse hepatocytes. ACEA, a CB1R agonist, up-regulated transcription of mouse fibrinogen via induction of ERRgamma, whereas knockdown of ERRgamma attenuated the effect of ACEA (10 microM) on fibrinogen expression in AML12 mouse hepatocytes. Deletion analyses of the mouse fibrinogen gamma (FGG) gene promoter and ChIP assays revealed binding sites for ERRgamma on the mouse FGG promoter. ACEA or adenovirus ERRgamma injection induced FGA, FGB and FGG mRNA and protein expression in mouse liver, while ERRgamma knockdown with Ad-shERRgamma attenuated ACEA-mediated induction of fibrinogen gene expression. Moreover, mice maintained on a high-fat diet (HFD) expressed higher levels of fibrinogen, whereas cannabinoid receptor type 1 (CB1R)-KO mice fed an HFD had nearly normal fibrinogen levels. Finally, GSK5182 (40 mg/kg) strongly inhibits the ACEA (10 mg/kg) or HFD-mediated induction of fibrinogen level in mice. Taken together, targeting ERRgamma with its inverse agonist GSK5182 represents a promising therapeutic strategy for ameliorating hyperfibrinogenemia.

Authors: Y. Zhang, D. K. Kim, Y. S. Jung, Y. H. Kim, Y. S. Lee, J. Kim, W. I. Jeong, I. K. Lee, S. J. Cho, S. Dooley, C. H. Lee, H. S. Choi

Date Published: 19th Jul 2018

Publication Type: Not specified

Abstract (Expand)

Transforming growth factor (TGF)-β stimulates extracellular matrix (ECM) deposition during development of liver fibrosis and cirrhosis, the most important risk factor for the onset of hepatocellular carcinoma. In liver cancer, TGF-β is responsible for a more aggressive and invasive phenotype, orchestrating remodeling of the tumor microenvironment and triggering epithelial-mesenchymal transition of cancer cells. This is the scientific rationale for targeting the TGF-β pathway via a small molecule, galunisertib (intracellular inhibitor of ALK5) in clinical trials to treat liver cancer patients at an advanced disease stage. In this study, the hypothesis that galunisertib modifies the tissue microenvironment via inhibition of the TGF-β pathway is tested in an experimental preclinical model. At the age of 6 months, Abcb4ko mice-a well-established model for chronic liver disease development and progression-are treated twice daily with galunisertib (150 mg/kg) via oral gavage for 14 consecutive days. Two days after the last treatment, blood plasma and livers are harvested for further assessment, including fibrosis scoring and ECM components. The reduction of Smad2 phosphorylation in both parenchymal and non-parenchymal liver cells following galunisertib administration confirms the treatment effectiveness. Damage-related galunisertib does not change cell proliferation, macrophage numbers and leucocyte recruitment. Furthermore, no clear impact on the amount of fibrosis is evident, as documented by PicroSirius red and Gomori-trichome scoring. On the other hand, several fibrogenic genes, e.g., collagens (Col1α1 and Col1α2), Tgf-β1 and Timp1, mRNA levels are significantly downregulated by galunisertib administration when compared to controls. Most interestingly, ECM/stromal components, fibronectin and laminin-332, as well as the carcinogenic β-catenin pathway, are remarkably reduced by galunisertib-treated Abcb5ko mice. In conclusion, TGF-β inhibition by galunisertib interferes, to some extent, with chronic liver progression, not by reducing the stage of liver fibrosis as measured by different scoring systems, but rather by modulating the biochemical composition of the deposited ECM, likely affecting the fate of non-parenchymal cells.

Authors: Seddik Hammad, Elisabetta Cavalcanti, Julia Werle, Maria Lucia Caruso, Anne Dropmann, Antonia Ignazzi, Matthias Philip Ebert, Steven Dooley, Gianluigi Giannelli

Date Published: 28th May 2018

Publication Type: Not specified

Abstract

Not specified

Authors: Haristi Gaitantzi, Christoph Meyer, Pia Rakoczy, Maria Thomas, Kristin Wahl, Franziska Wandrer, Heike Bantel, Hamed Alborzinia, Stefan Wölfl, Sabrina Ehnert, Andreas Nüssler, Ina Bergheim, Loredana Ciuclan, Matthias Ebert, Katja Breitkopf-Heinlein, Steven Dooley

Date Published: 1st Feb 2018

Publication Type: Not specified

Abstract

Not specified

Authors: Dilay Lai, Feng Teng, Seddik Hammad, Julia Werle, Thorsten Maas, Andreas Teufel, Martina U. Muckenthaler, Steven Dooley, Maja Vujić Spasić

Date Published: 1st Feb 2018

Publication Type: Not specified

Abstract (Expand)

Alcohol abuse is a global health problem causing a substantial fraction of chronic liver diseases. Abundant TGF-beta-a potent pro-fibrogenic cytokine-leads to disease progression. Our aim was to elucidate the crosstalk of TGF-beta and alcohol on hepatocytes. Primary murine hepatocytes were challenged with ethanol and TGF-beta and cell fate was determined. Fluidigm RNA analyses revealed transcriptional effects that regulate survival and apoptosis. Mechanistic insights were derived from enzyme/pathway inhibition experiments and modulation of oxidative stress levels. To substantiate findings, animal model specimens and human liver tissue cultures were investigated. RESULTS: On its own, ethanol had no effect on hepatocyte apoptosis, whereas TGF-beta increased cell death. Combined treatment led to massive hepatocyte apoptosis, which could also be recapitulated in human HCC liver tissue treated ex vivo. Alcohol boosted the TGF-beta pro-apoptotic gene signature. The underlying mechanism of pathway crosstalk involves SMAD and non-SMAD/AKT signaling. Blunting CYP2E1 and ADH activities did not prevent this effect, implying that it was not a consequence of alcohol metabolism. In line with this, the ethanol metabolite acetaldehyde did not mimic the effect and glutathione supplementation did not prevent the super-induction of cell death. In contrast, blocking GSK-3beta activity, a downstream mediator of AKT signaling, rescued the strong apoptotic response triggered by ethanol and TGF-beta. This study provides novel information on the crosstalk between ethanol and TGF-beta. We give evidence that ethanol directly leads to a boost of TGF-beta's pro-apoptotic function in hepatocytes, which may have implications for patients with chronic alcoholic liver disease.

Authors: H. Gaitantzi, C. Meyer, P. Rakoczy, M. Thomas, K. Wahl, F. Wandrer, H. Bantel, H. Alborzinia, S. Wolfl, S. Ehnert, A. Nussler, I. Bergheim, L. Ciuclan, M. Ebert, K. Breitkopf-Heinlein, S. Dooley

Date Published: 21st Jan 2018

Publication Type: Not specified

Abstract (Expand)

Diseases and toxins may lead to death of active liver tissue, resulting in a loss of total clearance capacity at the whole-body level. However, it remains difficult to study, whether the loss of metabolizing tissue is sufficient to explain loss of metabolic capacity of the liver or whether the surviving tissue undergoes an adaptive response to compensate the loss. To understand the cellular impact of toxic liver damage in an in vivo situation, we here used physiologically-based pharmacokinetic modelling to investigate pharmacokinetics of a specifically designed drug cocktail at three different sampling sites of the body in healthy mice and mice treated with carbon tetrachloride (CCl4). Liver zonation was explicitly quantified in the models through immunostaining of cytochrome P450s enzymes. Comparative analyses between the simulated decrease in clearance capacity and the experimentally measured loss in tissue volume indicated that CCl4-induced impairment of metabolic functions goes beyond the mere loss of metabolically active tissue. The here established integrative modelling strategy hence provides mechanistic insights into functional consequences of toxic liver damage in an in vivo situation, which would not have been accessible by conventional methods.

Authors: Arne Schenk, Ahmed Ghallab, Ute Hofmann, Reham Hassan, Michael Schwarz, Andreas Schuppert, Lars Ole Schwen, Albert Braeuning, Donato Teutonico, Jan G. Hengstler, Lars Kuepfer

Date Published: 1st Dec 2017

Publication Type: Not specified

Abstract (Expand)

Conjugated polymer nanoparticles exhibit strong fluorescence and have been applied for biological fluorescence imaging in cell culture and in small animals. However, conjugated polymer particles are hydrophobic and often chemically inert materials with diameters ranging from below 50 nm to several microns. As such, conjugated polymer nanoparticles cannot be excreted through the renal system. This drawback has prevented their application for clinical bio-medical imaging. Here, we present fully conjugated polymer nanoparticles based on imidazole units. These nanoparticles can be bio-degraded by activated macrophages. Reactive oxygen species induce scission of the conjugated polymer backbone at the imidazole unit, leading to complete decomposition of the particles into soluble low molecular weight fragments. Furthermore, the nanoparticles can be surface functionalized for directed targeting. The approach opens a wide range of opportunities for conjugated polymer particles in the fields of medical imaging, drug-delivery, and theranostics.

Authors: Tatjana Repenko, Anne Rix, Simon Ludwanowski, Dennis Go, Fabian Kiessling, Wiltrud Lederle, Alexander J. C. Kuehne

Date Published: 1st Dec 2017

Publication Type: Not specified

Abstract (Expand)

The metabolization and excretion of drugs in the liver are spatially heterogeneous processes. This is due to the spatial variability of physiological processes at different length scales of biological organization in healthy individuals, while many liver diseases further contribute to the heterogeneity. Classical, well-stirred pharmacokinetic models do not represent this heterogeneity, and various modeling approaches capable of representing heterogeneity have been developed recently. These approaches range from mechanistic and physio-geometrically realistic models focusing on specific spatial scales, via continuum models using homogenized physiological and metabolic properties, to integrative multiscale models. Such models could become essential research tools for simulations involving drugs with notable first-pass effects, fast-acting drugs or tracers, and diseased livers.

Authors: Lars Ole Schwen, Lars Kuepfer, Tobias Preusser

Date Published: 29th Nov 2017

Publication Type: Not specified

Abstract (Expand)

The need for extended liver resection is increasing due to the growing incidence of liver tumors in aging societies. Individualized surgical planning is the key for identifying the optimal resection strategy and to minimize the risk of postoperative liver failure and tumor recurrence. Current computational tools provide virtual planning of liver resection by taking into account the spatial relationship between the tumor and the hepatic vascular trees, as well as the size of the future liver remnant. However, size and function of the liver are not necessarily equivalent. Hence, determining the future liver volume might misestimate the future liver function, especially in cases of hepatic comorbidities such as hepatic steatosis. A systems medicine approach could be applied, including biological, medical, and surgical aspects, by integrating all available anatomical and functional information of the individual patient. Such an approach holds promise for better prediction of postoperative liver function and hence improved risk assessment. This review provides an overview of mathematical models related to the liver and its function and explores their potential relevance for computational liver surgery. We first summarize key facts of hepatic anatomy, physiology, and pathology relevant for hepatic surgery, followed by a description of the computational tools currently used in liver surgical planning. Then we present selected state-of-the-art computational liver models potentially useful to support liver surgery. Finally, we discuss the main challenges that will need to be addressed when developing advanced computational planning tools in the context of liver surgery.

Authors: Bruno Christ, Uta Dahmen, Karl-Heinz Herrmann, Matthias König, Jürgen R. Reichenbach, Tim Ricken, Jana Schleicher, Lars Ole Schwen, Sebastian Vlaic, Navina Waschinsky

Date Published: 14th Nov 2017

Publication Type: Not specified

Abstract

Not specified

Authors: Zeribe Chike Nwosu, Dominik Andre Megger, Seddik Hammad, Barbara Sitek, Stephanie Roessler, Matthias Philip Ebert, Christoph Meyer, Steven Dooley

Date Published: 1st Sep 2017

Publication Type: Not specified

Abstract (Expand)

Carbon tetrachloride-induced liver injury is a thoroughly studied model for regeneration and fibrosis in rodents. Nevertheless, its pattern of liver fibrosis is frequently misinterpreted as portal type. To clarify this, we show that collagen type IV+ "streets" and alpha-SMA+ cells accumulate pericentrally and extend to neighbouring central areas of the liver lobule, forming a 'pseudolobule'. Blood vessels in the center of such pseudolobules are portal veins as indicated by the presence of bile duct cells (CK19+) and the absence of pericentral hepatocytes (glutamine synthetase+). It is critical to correctly describe this pattern of fibrosis, particulary for metabolic zonation studies.

Authors: S. Hammad, A. Braeuning, C. Meyer, F. E. Z. A. Mohamed, J. G. Hengstler, S. Dooley

Date Published: 22nd Aug 2017

Publication Type: Not specified

Abstract (Expand)

OBJECTIVE: Bone morphogenetic protein (BMP)-9, a member of the transforming growth factor-beta family of cytokines, is constitutively produced in the liver. Systemic levels act on many organs and tissues including bone and endothelium, but little is known about its hepatic functions in health and disease. DESIGN: Levels of BMP-9 and its receptors were analysed in primary liver cells. Direct effects of BMP-9 on hepatic stellate cells (HSCs) and hepatocytes were studied in vitro, and the role of BMP-9 was examined in acute and chronic liver injury models in mice. RESULTS: Quiescent and activated HSCs were identified as major BMP-9 producing liver cell type. BMP-9 stimulation of cultured hepatocytes inhibited proliferation, epithelial to mesenchymal transition and preserved expression of important metabolic enzymes such as cytochrome P450. Acute liver injury caused by partial hepatectomy or single injections of carbon tetrachloride (CCl4) or lipopolysaccharide (LPS) into mice resulted in transient downregulation of hepatic BMP-9 mRNA expression. Correspondingly, LPS stimulation led to downregulation of BMP-9 expression in cultured HSCs. Application of BMP-9 after partial hepatectomy significantly enhanced liver damage and disturbed the proliferative response. Chronic liver damage in BMP-9-deficient mice or in mice adenovirally overexpressing the selective BMP-9 antagonist activin-like kinase 1-Fc resulted in reduced deposition of collagen and subsequent fibrosis. CONCLUSIONS: Constitutive expression of low levels of BMP-9 stabilises hepatocyte function in the healthy liver. Upon HSC activation, endogenous BMP-9 levels increase in vitro and in vivo and high levels of BMP-9 cause enhanced damage upon acute or chronic injury.

Authors: K. Breitkopf-Heinlein, C. Meyer, C. Konig, H. Gaitantzi, A. Addante, M. Thomas, E. Wiercinska, C. Cai, Q. Li, F. Wan, C. Hellerbrand, N. A. Valous, M. Hahnel, C. Ehlting, J. G. Bode, S. Muller-Bohl, U. Klingmuller, J. Altenoder, I. Ilkavets, M. J. Goumans, L. J. Hawinkels, S. J. Lee, M. Wieland, C. Mogler, M. P. Ebert, B. Herrera, H. Augustin, A. Sanchez, S. Dooley, P. Ten Dijke

Date Published: 25th Mar 2017

Publication Type: Not specified

Abstract (Expand)

BACKGROUND: The liver is the major site for alcohol metabolism in the body and therefore the primary target organ for ethanol (EtOH)-induced toxicity. In this study, we investigated the in vitro response of human liver cells to different EtOH concentrations in a perfused bioartificial liver device that mimics the complex architecture of the natural organ. METHODS: Primary human liver cells were cultured in the bioartificial liver device and treated for 24 hours with medium containing 150 mM (low), 300 mM (medium), or 600 mM (high) EtOH, while a control culture was kept untreated. Gene expression patterns for each EtOH concentration were monitored using Affymetrix Human Gene 1.0 ST Gene chips. Scaled expression profiles of differentially expressed genes (DEGs) were clustered using Fuzzy c-means algorithm. In addition, functional classification methods, KEGG pathway mapping and also a machine learning approach (Random Forest) were utilized. RESULTS: A number of 966 (150 mM EtOH), 1,334 (300 mM EtOH), or 4,132 (600 mM EtOH) genes were found to be differentially expressed. Dose-response relationships of the identified clusters of co-expressed genes showed a monotonic, threshold, or nonmonotonic (hormetic) behavior. Functional classification of DEGs revealed that low or medium EtOH concentrations operate adaptation processes, while alterations observed for the high EtOH concentration reflect the response to cellular damage. The genes displaying a hormetic response were functionally characterized by overrepresented "cellular ketone metabolism" and "carboxylic acid metabolism." Altered expression of the genes BAHD1 and H3F3B was identified as sufficient to classify the samples according to the applied EtOH doses. CONCLUSIONS: Different pathways of metabolic and epigenetic regulation are affected by EtOH exposition and partly undergo hormetic regulation in the bioartificial liver device. Gene expression changes observed at high EtOH concentrations reflect in some aspects the situation of alcoholic hepatitis in humans.

Authors: W. Schmidt-Heck, E. C. Wonne, T. Hiller, U. Menzel, D. Koczan, G. Damm, D. Seehofer, F. Knospel, N. Freyer, R. Guthke, S. Dooley, K. Zeilinger

Date Published: 23rd Feb 2017

Publication Type: Not specified

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH