Publications

What is a Publication?
34 Publications visible to you, out of a total of 34

Abstract (Expand)

The biliary epithelial cells, also known as cholangiocytes, line the intra- and extrahepatic bile ducts, forming a barrier between intra- and extra-ductal environments. Cholangiocytes are mostly knowne mostly known to modulate bile composition and transportation. In hepatobiliary diseases, bile duct injury leads to drastic alterations in cholangiocyte phenotypes and their release of soluble mediators, which can vary depending on the original insult and cellular states (quiescence, senescence, or proliferation). The cholangiocyte-secreted cytokines (also termed cholangiokines) drive ductular cell proliferation, portal inflammation and fibrosis, and carcinogenesis. Hence, despite the previous consensus that cholangiocytes are bystanders in liver diseases, their diverse secretome plays critical roles in modulating the intrahepatic microenvironment. This review summarizes recent insights into the cholangiokines under both physiological and pathological conditions, especially as they occur during liver injury-regeneration, inflammation, fibrosis and malignant transformation processes.

Authors: Xiurong Cai, Frank Tacke, Adrien Guillot, Hanyang Liu

Date Published: 16th May 2023

Publication Type: Journal

Abstract (Expand)

BACKGROUND: Clinically significant portal hypertension (CSPH) drives cirrhosis-related complications (i.e. hepatic decompensation). Impaired nitric oxide (NO) bioavailability promotes sinusoidal vasoconstriction, which is the initial pathomechanism of CSPH development. Activation of soluble guanylyl cyclase (sGC), a key downstream effector of NO, facilitates sinusoidal vasodilation, which in turn may improve CSPH. Two phase II studies are being conducted to assess the efficacy of the NO-independent sGC activator BI 685,509 in patients with CSPH due to various cirrhosis aetiologies. METHODS: The 1366.0021 trial (NCT05161481) is a randomised, placebo-controlled, exploratory study that will assess BI 685,509 (moderate or high dose) for 24 weeks in patients with CSPH due to alcohol-related liver disease. The 1366.0029 trial (NCT05282121) is a randomised, open-label, parallel-group, exploratory study that will assess BI 685,509 (high dose) alone in patients with hepatitis B or C virus infection or non-alcoholic steatohepatitis (NASH) and in combination with 10 mg empagliflozin in patients with NASH and type 2 diabetes mellitus for 8 weeks. The 1366.0021 trial will enrol 105 patients, and the 1366.0029 trial will enrol 80 patients. In both studies, the primary endpoint is the change from baseline in hepatic venous pressure gradient (HVPG) until the end of treatment (24 or 8 weeks, respectively). Secondary endpoints include the proportion of patients with an HVPG reduction of > 10% from baseline, the development of decompensation events and the change from baseline in HVPG after 8 weeks in the 1366.0021 trial. In addition, the trials will assess changes in liver and spleen stiffness by transient elastography, changes in hepatic and renal function and the tolerability of BI 685,509. DISCUSSION: These trials will enable the assessment of the short-term (8 weeks) and longer-term (24 weeks) effects and safety of sGC activation by BI 685,509 on CSPH due to various cirrhosis aetiologies. The trials will use central readings of the diagnostic gold standard HVPG for the primary endpoint, as well as changes in established non-invasive biomarkers, such as liver and spleen stiffness. Ultimately, these trials will provide key information for developing future phase III trials. TRIAL REGISTRATION: 1366.0021: EudraCT no. 2021-001,285-38; ClinicalTrials.gov NCT05161481. Registered on 17 December 2021, https://www. CLINICALTRIALS: gov/ct2/show/NCT05161481 . 1366.0029: EudraCT no. 2021-005,171-40; ClinicalTrials.gov NCT05282121. Registered on 16 March 2022, https://www. CLINICALTRIALS: gov/ct2/show/NCT05282121 .

Authors: T. Reiberger, A. Berzigotti, J. Trebicka, J. Ertle, I. Gashaw, R. Swallow, A. Tomisser

Date Published: 24th Apr 2023

Publication Type: Journal

Abstract (Expand)

Hepatocytes grow their apical surfaces anisotropically to generate a 3D network of bile canaliculi (BC). BC elongation is ensured by apical bulkheads, membrane extensions that traverse the lumen and the lumen and connect juxtaposed hepatocytes. We hypothesize that apical bulkheads are mechanical elements that shape the BC lumen in liver development but also counteract elevated biliary pressure. Here, by resolving their structure using STED microscopy, we found that they are sealed by tight junction loops, connected by adherens junctions, and contain contractile actomyosin, characteristics of mechanical function. Apical bulkheads persist at high pressure upon microinjection of fluid into the BC lumen, and laser ablation demonstrated that they are under tension. A mechanical model based on ablation results revealed that apical bulkheads double the pressure BC can hold. Apical bulkhead frequency anticorrelates with BC connectivity during mouse liver development, consistent with predicted changes in biliary pressure. Our findings demonstrate that apical bulkheads are load-bearing mechanical elements that could protect the BC network against elevated pressure.

Authors: Maarten P. Bebelman, Matthew J. Bovyn, Carlotta M. Mayer, Julien Delpierre, Ronald Naumann, Nuno P. Martins, Alf Honigmann, Yannis Kalaidzidis, Pierre A. Haas, Marino Zerial

Date Published: 3rd Apr 2023

Publication Type: Journal

Abstract (Expand)

Functional interaction between cancer cells and the surrounding microenvironment is still not sufficiently understood, which motivates the tremendous interest for the development of numerous in vitro tumor models. Diverse parameters, for example, transport of nutrients and metabolites, availability of space in the confinement, etc. make an impact on the size, shape, and metabolism of the tumoroids. We demonstrate the fluidics-based low-cost methodology to reproducibly generate the alginate and alginate-chitosan microcapsules and apply it to grow human hepatoma (HepG2) spheroids of different dimensions and geometries. Focusing specifically on the composition and thickness of the hydrogel shell, permeability of the microcapsules was selectively tuned. The diffusion of the selected benchmark molecules through the shell has been systematically investigated using both, experiments and simulations, which is essential to ensure efficient mass transfer and/or filtering of the biochemical species. Metabolic activity of spheroids in microcapsules was confirmed by tracking the turnover of testosterone to androstenedione with chromatography studies in a metabolic assay. Depending on available space, phenotypically different 3D cell assemblies have been observed inside the capsules, varying in the tightness of cell aggregations and their shapes. Conclusively, we believe that our system with the facile tuning of the shell thickness and permeability, represents a promising platform for studying the formation of cancer spheroids and their functional interaction with the surrounding microenvironment.

Authors: Xuan Peng, Željko Janićijević, Sandy Lemm, Markus Laube, Jens Pietzsch, Michael Bachmann, Larysa Baraban

Date Published: 27th Mar 2023

Publication Type: Journal

Abstract (Expand)

Chemokines or chemotactic cytokines play a pivotal role in the immune pathogenesis of liver cirrhosis and hepatocellular carcinoma (HCC). Nevertheless, comprehensive cytokine profiling data across different etiologies of liver diseases are lacking. Chemokines might serve as diagnostic and prognostic biomarkers. In our study, we analyzed serum concentrations of 12 inflammation-related chemokines in a cohort of patients (n = 222) with cirrhosis of different etiologies and/or HCC. We compared 97 patients with cirrhosis and treatment-naive HCC to the chemokine profile of 125 patients with cirrhosis but confirmed absence of HCC. Nine out of twelve chemokines were significantly elevated in sera of cirrhotic patients with HCC compared to HCC-free cirrhosis controls (CCL2, CCL11, CCL17, CCL20, CXCL1, CXCL5, CXCL9, CXCL10, CXCL11). Among those, CXCL5, CXCL9, CXCL10, and CXCL11 were significantly elevated in patients with early HCC according to the Barcelona Clinic Liver Cancer (BCLC) stages 0/A compared to cirrhotic controls without HCC. In patients with HCC, CXCL5 serum levels were associated with tumor progression, and levels of CCL20 and CXCL8 with macrovascular invasion. Importantly, our study identified CXCL5, CXCL9, and CXCL10 as universal HCC markers, independent from underlying etiology of cirrhosis. In conclusion, regardless of the underlying liver disease, patients with cirrhosis share an HCC-specific chemokine profile. CXCL5 may serve as a diagnostic biomarker in cirrhotic patients for early HCC detection as well as for tumor progression.

Authors: A. Laschtowitz, J. Lambrecht, T. Puengel, F. Tacke, R. Mohr

Date Published: 10th Mar 2023

Publication Type: Journal

Abstract (Expand)

Motivation Biological tissues are dynamic and highly organized. Multi-scale models are helpful tools to analyze and understand the processes determining tissue dynamics. These models usually depend on parameters that need to be inferred from experimental data to achieve a quantitative understanding, to predict the response to perturbations, and to evaluate competing hypotheses. However, even advanced inference approaches such as Approximate Bayesian Computation (ABC) are difficult to apply due to the computational complexity of the simulation of multi-scale models. Thus, there is a need for a scalable pipeline for modeling, simulating, and parameterizing multi-scale models of multi-cellular processes. Results Here, we present FitMultiCell, a computationally efficient and user-friendly open-source pipeline that can handle the full workflow of modeling, simulating, and parameterizing for multi-scale models of multi-cellular processes. The pipeline is modular and integrates the modeling and simulation tool Morpheus and the statistical inference tool pyABC. The easy integration of high-performance infrastructure allows to scale to computationally expensive problems. The introduction of a novel standard for the formulation of parameter inference problems for multi-scale models additionally ensures reproducibility and reusability. By applying the pipeline to multiple biological problems, we demonstrate its broad applicability, which will benefit in particular image-based systems biology. Availability FitMultiCell is available open-source at https://gitlab.com/fitmulticell/fit Supplementary data are available at https://doi.org/10.5281/zenodo.7646287

Authors: Emad Alamoudi, Yannik Schälte, Robert Müller, Jörn Starruß, Nils Bundgaard, Frederik Graw, Lutz Brusch, Jan Hasenauer

Date Published: 21st Feb 2023

Publication Type: Misc

Abstract (Expand)

Multi-target drugs (MTDs) are emerging alternatives to combination therapies. Since both histone deacetylases (HDACs) and cyclooxygenase-2 (COX-2) are known to be overexpressed in several cancer types, we herein report the design, synthesis, and biological evaluation of a library of dual HDAC-COX inhibitors. The designed compounds were synthesized via an efficient parallel synthesis approach using preloaded solid-phase resins. Biological in vitro assays demonstrated that several of the synthesized compounds possess pronounced inhibitory activities against HDAC and COX isoforms. The membrane permeability and inhibition of cellular HDAC activity of selected compounds were confirmed by whole-cell HDAC inhibition assays and immunoblot experiments. The most promising dual inhibitors, C3 and C4, evoked antiproliferative effects in the low micromolar concentration range and caused a significant increase in apoptotic cells. In contrast to previous reports, the simultaneous inhibition of HDAC and COX activity by dual HDAC-COX inhibitors or combination treatments with vorinostat and celecoxib did not result in additive or synergistic anticancer activities.

Authors: Luisa M. Bachmann, Maria Hanl, Felix Feller, Laura Sinatra, Andrea Schöler, Jens Pietzsch, Markus Laube, Finn K. Hansen

Date Published: 1st Feb 2023

Publication Type: Journal

Abstract (Expand)

Objective Hepatocellular carcinoma (HCC) often develops in patients with alcohol-related cirrhosis at an annual risk of up to 2.5%. Some host genetic risk factors have been identified but do not accounttors have been identified but do not account for the majority of the variance in occurrence. This study aimed to identify novel susceptibility loci for the development of HCC in people with alcohol related cirrhosis. Design Patients with alcohol-related cirrhosis and HCC (cases: n=1214) and controls without HCC (n=1866), recruited from Germany, Austria, Switzerland, Italy and the UK, were included in a two-stage genome-wide association study using a case–control design. A validation cohort of 1520 people misusing alcohol but with no evidence of liver disease was included to control for possible association effects with alcohol misuse. Genotyping was performed using the InfiniumGlobal Screening Array (V.24v2, Illumina) and the OmniExpress Array (V.24v1-0a, Illumina). Results Associations with variants rs738409 in PNPLA3 and rs58542926 in TM6SF2 previously associated with an increased risk of HCC in patients with alcohol-related cirrhosis were confirmed at genome-wide significance. A novel locus rs2242652(A) in TERT (telomerase reverse transcriptase) was also associated with a decreased risk of HCC, in the combined meta-analysis, at genome-wide significance (p=6.41×10 −9 , OR=0.61 (95% CI 0.52 to 0.70). This protective association remained significant after correction for sex, age, body mass index and type 2 diabetes (p=7.94×10 −5 , OR=0.63 (95% CI 0.50 to 0.79). Carriage of rs2242652(A) in TERT was associated with an increased leucocyte telomere length (p=2.12×10 −44 ). Conclusion This study identifies rs2242652 in TERT as a novel protective factor for HCC in patients with alcohol-related cirrhosis.

Authors: Stephan Buch, Hamish Innes, Philipp Ludwig Lutz, Hans Dieter Nischalke, Jens U Marquardt, Janett Fischer, Karl Heinz Weiss, Jonas Rosendahl, Astrid Marot, Marcin Krawczyk, Markus Casper, Frank Lammert, Florian Eyer, Arndt Vogel, Silke Marhenke, Johann von Felden, Rohini Sharma, Stephen Rahul Atkinson, Andrew McQuillin, Jacob Nattermann, Clemens Schafmayer, Andre Franke, Christian Strassburg, Marcella Rietschel, Heidi Altmann, Stefan Sulk, Veera Raghavan Thangapandi, Mario Brosch, Carolin Lackner, Rudolf E Stauber, Ali Canbay, Alexander Link, Thomas Reiberger, Mattias Mandorfer, Georg Semmler, Bernhard Scheiner, Christian Datz, Stefano Romeo, Stefano Ginanni Corradini, William Lucien Irving, Joanne R Morling, Indra Neil Guha, Eleanor Barnes, M Azim Ansari, Jocelyn Quistrebert, Luca Valenti, Sascha A Müller, Marsha Yvonne Morgan, Jean-François Dufour, Jonel Trebicka, Thomas Berg, Pierre Deltenre, Sebastian Mueller, Jochen Hampe, Felix Stickel

Date Published: 5th Jan 2023

Publication Type: Journal

Abstract (Expand)

Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a rare primary liver cancer which displays clinicopathologic features of both hepatocellular (HCC) and cholangiocellular carcinoma (CCA). Theoma (CCA). The similarity to HCC and CCA makes the diagnostic workup particularly challenging. Alpha-fetoprotein (AFP) and carbohydrate antigen 19-9 (CA 19-9) are blood tumour markers related with HCC and CCA, respectively. They can be used as diagnostic markers in cHCC-CCA as well, albeit with low sensitivity. The imaging features of cHCC-CCA overlap with those of HCC and CCA, dependent on the predominant histopathological component. Using the Liver Imaging and Reporting Data System (LI-RADS), as many as half of cHCC-CCAs may be falsely categorised as HCC. This is especially relevant since the diagnosis of HCC may be made without histopathological confirmation in certain cases. Thus, in instances of diagnostic uncertainty (e.g., simultaneous radiological HCC and CCA features, elevation of CA 19-9 and AFP, HCC imaging features and elevated CA 19-9, and vice versa) multiple image-guided core needle biopsies should be performed and analysed by an experienced pathologist. Recent advances in the molecular characterisation of cHCC-CCA, innovative diagnostic approaches (e.g., liquid biopsies) and methods to analyse multiple data points (e.g., clinical, radiological, laboratory, molecular, histopathological features) in an all-encompassing way (e.g., by using artificial intelligence) might help to address some of the existing diagnostic challenges.

Authors: Johannes Eschrich, Zuzanna Kobus, Dominik Geisel, Sebastian Halskov, Florian Roßner, Christoph Roderburg, Raphael Mohr, Frank Tacke

Date Published: 2023

Publication Type: Journal

Abstract

Not specified

Authors: Adrien Guillot, Marc Winkler, Milessa Silva Afonso, Abhishek Aggarwal, David Lopez, Hilmar Berger, Marlene S. Kohlhepp, Hanyang Liu, Burcin Özdirik, Johannes Eschrich, Jing Ma, Moritz Peiseler, Felix Heymann, Swetha Pendem, Sangeetha Mahadevan, Bin Gao, Lauri Diehl, Ruchi Gupta, Frank Tacke

Date Published: 2023

Publication Type: Journal

Abstract

Not specified

Authors: Felix Heymann, Jana C. Mossanen, Moritz Peiseler, Patricia M. Niemietz, Bruna Araujo David, Oliver Krenkel, Anke Liepelt, Matheus Batista Carneiro, Marlene S. Kohlhepp, Paul Kubes, Frank Tacke

Date Published: 2023

Publication Type: Journal

Abstract

Not specified

Authors: Savneet Kaur, Srivatsan Kidambi, Martí Ortega-Ribera, Le Thi Thanh Thuy, Natalia Nieto, Victoria C. Cogger, Wei-Fen Xie, Frank Tacke, Jordi Gracia-Sancho

Date Published: 2023

Publication Type: Journal

Abstract

Not specified

Authors: Herbert Tilg, Timon E. Adolph, Frank Tacke

Date Published: 2023

Publication Type: Journal

Abstract

Not specified

Authors: Joscha Vonderlin, Triantafyllos Chavakis, Michael Sieweke, Frank Tacke

Date Published: 2023

Publication Type: Journal

Abstract (Expand)

The characterization of novel radiotracers toward their metabolic stability is an essential part of their development. While in vitro methods such as liver microsome assays or ex vivo blood or tissue samples provide information on overall stability, little or no information is obtained on cytochrome P450 (CYP) enzyme and isoform-specific contribution to the metabolic fate of individual radiotracers. Herein, we investigated recently established CYP-overexpressing hepatoblastoma cell lines (HepG2) for their suitability to study the metabolic stability of radiotracers in general and to gain insight into CYP isoform specificity. Wildtype HepG2 and CYP1A2-, CYP2C19-, and CYP3A4-overexpressing HepG2 cells were incubated with radiotracers, and metabolic turnover was analyzed. The optimized protocol, covering cell seeding in 96-well plates and analysis of supernatant by radio thin-layer-chromatography for higher throughput, was transferred to the evaluation of three (18)F-labeled celecoxib-derived cyclooxygenase-2 inhibitors (coxibs). These investigations revealed time-dependent degradation of the intact radiotracers, as well as CYP isoform- and substrate-specific differences in their metabolic profiles. HepG2 CYP2C19 proved to be the cell line showing the highest metabolic turnover for each radiotracer studied here. Comparison with human and murine liver microsome assays showed good agreement with the human metabolite profile obtained by the HepG2 cell lines. Therefore, CYP-overexpressing HepG2 cells provide a good complement for assessing the metabolic stability of radiotracers and allow the analysis of the CYP isoform-specific contribution to the overall radiotracer metabolism.

Authors: S. Lemm, S. Kohler, R. Wodtke, F. Jung, J. H. Kupper, J. Pietzsch, M. Laube

Date Published: 7th Aug 2022

Publication Type: Journal

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH