Publications

What is a Publication?
10 Publications visible to you, out of a total of 10

Abstract (Expand)

Liver macrophages (LMs) play a central role in acute and chronic liver pathologies. Investigation of these processes in humans as well as the development of diagnostic tools and new therapeutic strategies require in vitro models that closely resemble the in vivo situation. In our study, we sought to gain further insight into the role of LMs in different liver pathologies and into their characteristics after isolation from liver tissue. For this purpose, LMs were characterized in human liver tissue sections using immunohistochemistry and bioinformatic image analysis. Isolated cells were characterized in suspension using FACS analyses and in culture using immunofluorescence staining and laser scanning microscopy as well as functional assays. The majority of our investigated liver tissues were characterized by anti-inflammatory LMs which showed a homogeneous distribution and increased cell numbers in correlation with chronic liver injuries. In contrast, pro-inflammatory LMs appeared as temporary and locally restricted reactions. Detailed characterization of isolated macrophages revealed a complex disease dependent pattern of LMs consisting of pro- and anti-inflammatory macrophages of different origins, regulatory macrophages and monocytes. Our study showed that in most cases the macrophage pattern can be transferred in adherent cultures. The observed exceptions were restricted to LMs with pro-inflammatory characteristics.

Authors: Andrea Zimmermann, René Hänsel, Kilian Gemünden, Victoria Kegel-Hübner, Jonas Babel, Hendrik Bläker, Madlen Matz-Soja, Daniel Seehofer, Georg Damm

Date Published: 1st Apr 2021

Publication Type: Journal

Abstract (Expand)

While the role of cholesterol in liver carcinogenesis remains controversial, hepatocellular carcinoma generally prevails in males. Herein, we uncover pathways of female-prevalent progression to hepatocellular carcinoma due to chronic repression of cholesterogenic lanosterol 14alpha-demethylase (CYP51) in hepatocytes. Tumors develop in knock-out mice after year one, with 2:1 prevalence in females. Metabolic and transcription factor networks were deduced from the liver transcriptome data, combined by sterol metabolite and blood parameter analyses, and interpreted with relevance to humans. Female knock-outs show increased plasma cholesterol and HDL, dampened lipid-related transcription factors FXR, LXRalpha:RXRalpha, and importantly, crosstalk between reduced LXRalpha and activated TGF-beta signalling, indicating a higher susceptibility to HCC in aging females. PI3K/Akt signalling and ECM-receptor interaction are common pathways that are disturbed by sex-specific altered genes. Additionally, transcription factors (SOX9)2 and PPARalpha were recognized as important for female hepatocarcinogenesis, while overexpressed Cd36, a target of nuclear receptor RORC, is a new male-related regulator of ECM-receptor signalling in hepatocarcinogenesis. In conclusion, we uncover the sex-dependent metabolic reprogramming of cholesterol-related pathways that predispose for hepatocarcinogenesis in aging females. This is important in light of increased incidence of liver cancers in post-menopausal women.

Authors: K. B. Cokan, Z. Urlep, G. Lorbek, M. Matz-Soja, C. Skubic, M. Perse, J. Jeruc, P. Juvan, T. Rezen, D. Rozman

Date Published: 9th Nov 2020

Publication Type: Journal

Abstract (Expand)

In the liver, energy homeostasis is mainly regulated by mechanistic target of rapamycin (mTOR) signalling, which influences relevant metabolic pathways, including lipid metabolism. However, the Hedgehog (Hh) pathway is one of the newly identified drivers of hepatic lipid metabolism. Although the link between mTOR and Hh signalling was previously demonstrated in cancer development and progression, knowledge of their molecular crosstalk in healthy liver is lacking. To close this information gap, we used a transgenic mouse model, which allows hepatocyte-specific deletion of the Hh pathway, and in vitro studies to reveal interactions between Hh and mTOR signalling. The study was conducted in male and female mice to investigate sexual differences in the crosstalk of these signalling pathways. Our results reveal that the conditional Hh knockout reduces mitochondrial adenosine triphosphate (ATP) production in primary hepatocytes from female mice and inhibits autophagy in hepatocytes from both sexes. Furthermore, in vitro studies show a synergistic effect of cyclopamine and rapamycin on the inhibition of mTor signalling and oxidative respiration in primary hepatocytes from male and female C57BL/6N mice. Overall, our results demonstrate that the impairment of Hh signalling influences mTOR signalling and therefore represses oxidative phosphorylation and autophagy.

Authors: Luise Spormann, Christiane Rennert, Erik Kolbe, Fritzi Ott, Carolin Lossius, Robert Lehmann, Rolf Gebhardt, Thomas Berg, Madlen Matz-Soja

Date Published: 1st Aug 2020

Publication Type: Journal

Abstract (Expand)

Hepatoblastoma (HB), the most common pediatric primary liver neoplasm, shows nuclear localization of beta-catenin and yes-associated protein 1 (YAP1) in almost 80% of the cases. Co-expression of constitutively active S127A-YAP1 and DeltaN90 deletion-mutant beta-catenin (YAP1-DeltaN90-beta-catenin) causes HB in mice. Because heterogeneity in downstream signaling is being identified owing to mutational differences even in the beta-catenin gene alone, we investigated if co-expression of point mutants of beta-catenin (S33Y or S45Y) with S127A-YAP1 led to similar tumors as YAP1-DeltaN90-beta-catenin. Co-expression of S33Y/S45Y-beta-catenin and S127A-YAP1 led to activation of Yap and Wnt signaling and development of HB, with 100% mortality by 13 to 14 weeks. Co-expression with YAP1-S45Y/S33Y-beta-catenin of the dominant-negative T-cell factor 4 or dominant-negative transcriptional enhanced associate domain 2, the respective surrogate transcription factors, prevented HB development. Although histologically similar, HB in YAP1-S45Y/S33Y-beta-catenin, unlike YAP1-DeltaN90-beta-catenin HB, was glutamine synthetase (GS) positive. However, both DeltaN90-beta-catenin and point-mutant beta-catenin comparably induced GS-luciferase reporter in vitro. Finally, using a previously reported 16-gene signature, it was shown that YAP1-DeltaN90-beta-catenin HB tumors exhibited genetic similarities with more proliferative, less differentiated, GS-negative HB patient tumors, whereas YAP1-S33Y/S45Y-beta-catenin HB exhibited heterogeneity and clustered with both well-differentiated GS-positive and proliferative GS-negative patient tumors. Thus, we demonstrate that beta-catenin point mutants can also collaborate with YAP1 in HB development, albeit with a distinct molecular profile from the deletion mutant, which may have implications in both biology and therapy.

Authors: Q. Min, L. Molina, J. Li, A. O. Adebayo Michael, J. O. Russell, M. E. Preziosi, S. Singh, M. Poddar, M. Matz-Soja, S. Ranganathan, A. W. Bell, R. Gebhardt, F. Gaunitz, J. Yu, J. Tao, S. P. Monga

Date Published: 23rd Feb 2019

Publication Type: Not specified

Abstract (Expand)

BACKGROUND & AIMS: The mammalian circadian clock controls various aspects of liver metabolism and integrates nutritional signals. Recently, we described Hedgehog (Hh) signaling as a novel regulator of liver lipid metabolism. Herein, we investigated crosstalk between hepatic Hh signaling and circadian rhythm. METHODS: Diurnal rhythms of Hh signaling were investigated in liver and hepatocytes from mice with ablation of Smoothened (SAC-KO) and crossbreeds with PER2::LUC reporter mice. By using genome-wide screening, qPCR, immunostaining, ELISA and RNAi experiments in vitro we identified relevant transcriptional regulatory steps. Shotgun lipidomics and metabolic cages were used for analysis of metabolic alterations and behavior. RESULTS: Hh signaling showed diurnal oscillations in liver and hepatocytes in vitro. Correspondingly, the level of Indian Hh, oscillated in serum. Depletion of the clock gene Bmal1 in hepatocytes resulted in significant alterations in the expression of Hh genes. Conversely, SAC-KO mice showed altered expression of clock genes, confirmed by RNAi against Gli1 and Gli3. Genome-wide screening revealed that SAC-KO hepatocytes showed time-dependent alterations in various genes, particularly those associated with lipid metabolism. The clock/hedgehog module further plays a role in rhythmicity of steatosis, and in the response of the liver to a high-fat diet or to differently timed starvation. CONCLUSIONS: For the first time, Hh signaling in hepatocytes was found to be time-of-day dependent and to feed back on the circadian clock. Our findings suggest an integrative role of Hh signaling, mediated mainly by GLI factors, in maintaining homeostasis of hepatic lipid metabolism by balancing the circadian clock. LAY SUMMARY: The results of our investigation show for the first time that the Hh signaling in hepatocytes is time-of-day dependent, leading to differences not only in transcript levels but also in the amount of Hh ligands in peripheral blood. Conversely, Hh signaling is able to feed back to the circadian clock.

Authors: E. Marbach-Breitruck, M. Matz-Soja, U. Abraham, W. Schmidt-Heck, S. Sales, C. Rennert, M. Kern, S. Aleithe, L. Spormann, C. Thiel, R. Gerlini, K. Arnold, N. Kloting, R. Guthke, D. Rozman, R. Teperino, A. Shevchenko, A. Kramer, R. Gebhardt

Date Published: 4th Feb 2019

Publication Type: Not specified

Abstract

Not specified

Authors: Mario Brosch, Kathrin Kattler, Alexander Herrmann, Witigo von Schönfels, Karl Nordström, Daniel Seehofer, Georg Damm, Thomas Becker, Sebastian Zeissig, Sophie Nehring, Fabian Reichel, Vincent Moser, Raghavan Veera Thangapandi, Felix Stickel, Gustavo Baretton, Christoph Röcken, Michael Muders, Madlen Matz-Soja, Michael Krawczak, Gilles Gasparoni, Hella Hartmann, Andreas Dahl, Clemens Schafmayer, Jörn Walter, Jochen Hampe

Date Published: 1st Dec 2018

Publication Type: Not specified

Abstract

Not specified

Authors: Christiane Rennert, Sebastian Vlaic, Eugenia Marbach-Breitrück, Carlo Thiel, Susanne Sales, Andrej Shevchenko, Rolf Gebhardt, Madlen Matz-Soja

Date Published: 10th Sep 2018

Publication Type: Not specified

Abstract (Expand)

Organ regeneration is a very complex process that includes not only the reconstruction of organ mass but also the reorganisation of homeostatic capabilities. This especially applies for the liver, which performs a variety of metabolic functions. In the last decade, morphogenic pathways such as the Wnt/β-Catenin and Hedgehog signalling pathways have been revealed to orchestrate liver regeneration as well as metabolism. Mathematical models have been successfully applied to liver regeneration, but these have not integrated the Hedgehog signalling pathway. In this review it is tried to compile features of Hh signalling in liver regeneration which can be integrated into liver regeneration modeling.

Author: Madlen Matz-Soja

Date Published: 1st Jul 2017

Publication Type: Not specified

Abstract (Expand)

The Hedgehog signaling pathway is known to be involved in embryogenesis, tissue remodeling, and carcinogenesis. Because of its involvement in carcinogenesis, it seems an interesting target for cancer therapy. Indeed, Sonidegib, an approved inhibitor of the Hedgehog receptor Smoothened (Smo), is highly active against diverse carcinomas, but its use is also reported to be associated with several systemic side effects. Our former work in adult mice demonstrated hepatic Hedgehog signaling to play a key role in the insulin-like growth factor axis and lipid metabolism. The current work using mice with an embryonic and hepatocyte-specific Smo deletion describes an adverse impact of the hepatic Hedgehog pathway on female fertility. In female SAC-KO mice, we detected androgenization characterized by a 3.3-fold increase in testosterone at 12 weeks of age based on an impressive induction of steroidogenic gene expression in hepatocytes, but not in the classic steroidogenic organs (ovary and adrenal gland). Along with the elevated level of testosterone, the female SAC-KO mice showed infertility characterized by juvenile reproductive organs and acyclicity. The endocrine and reproductive alterations resembled polycystic ovarian syndrome and could be confirmed in a second mouse model with conditional deletion of Smo at 8 weeks of age after an extended period of 8 months. We conclude that the down-regulation of hepatic Hedgehog signaling leads to an impaired hormonal balance by the induction of steroidogenesis in the liver. These effects of Hedgehog signaling inhibition should be considered when using Hedgehog inhibitors as anti-cancer drugs.

Authors: Christiane Rennert, Franziska Eplinius, Ute Hofmann, Janina Johänning, Franziska Rolfs, Wolfgang Schmidt-Heck, Reinhardt Guthke, Rolf Gebhardt, Albert M. Ricken, Madlen Matz-Soja

Date Published: 30th May 2017

Publication Type: Not specified

Abstract (Expand)

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in industrialized countries and is increasing in prevalence. The pathomechanisms, however, are poorly understood. This study assessed the unexpected role of the Hedgehog pathway in adult liver lipid metabolism. Using transgenic mice with conditional hepatocyte-specific deletion of Smoothened in adult mice, we showed that hepatocellular inhibition of Hedgehog signaling leads to steatosis by altering the abundance of the transcription factors GLI1 and GLI3. This steatotic 'Gli-code' caused the modulation of a complex network of lipogenic transcription factors and enzymes, including SREBP1 and PNPLA3, as demonstrated by microarray analysis and siRNA experiments and could be confirmed in other steatotic mouse models as well as in steatotic human livers. Conversely, activation of the Hedgehog pathway reversed the "Gli-code" and mitigated hepatic steatosis. Collectively, our results reveal that dysfunctions in the Hedgehog pathway play an important role in hepatic steatosis and beyond.

Authors: M. Matz-Soja, C. Rennert, K. Schonefeld, S. Aleithe, J. Boettger, W. Schmidt-Heck, T. S. Weiss, A. Hovhannisyan, S. Zellmer, N. Kloting, A. Schulz, J. Kratzsch, R. Guthke, R. Gebhardt

Date Published: 17th May 2016

Publication Type: Not specified

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH