Publications

What is a Publication?
51 Publications visible to you, out of a total of 51

Abstract (Expand)

The standard of care for gastroesophageal cancer patients with hepatic or pulmonary metastases is best supportive care or palliative chemotherapy. Occasionally, patients can be selected for curative treatment instead. This study aimed to evaluate patients who underwent a resection of hepatic or pulmonary metastasis with curative intent. The Dutch national registry for histo- and cytopathology was used to identify these patients. Data were retrieved from the individual patient files. Kaplan-Meier survival analysis was performed. Between 1991 and 2016, 32,057 patients received a gastrectomy or esophagectomy for gastroesophageal cancer in the Netherlands. Of these patients, 34 selected patients received a resection of hepatic metastasis (n = 19) or pulmonary metastasis (n = 15) in 21 different hospitals. Only 4 patients received neoadjuvant therapy before metastasectomy. The majority of patients had solitary, metachronous metastases. After metastasectomy, grade 3 (Clavien-Dindo) complications occurred in 7 patients and mortality in 1 patient. After resection of hepatic metastases, the median potential follow-up time was 54 months. Median overall survival (OS) was 28 months and the 1-, 3-, and 5- year OS was 84%, 41%, and 31%, respectively. After pulmonary metastases resection, the median potential follow-up time was 80 months. The median OS was not reached and the 1-, 3-, and 5- year OS was 67%, 53%, and 53%, respectively. In selected patients with gastroesophageal cancer with hepatic or pulmonary metastases, metastasectomy was performed with limited morbidity and mortality and offered a 5-year OS of 31-53%. Further prospective studies are required.

Authors: M. F. J. Seesing, A. van der Veen, H. J. F. Brenkman, H. B. A. C. Stockmann, G. A. P. Nieuwenhuijzen, C. Rosman, F. J. H. van den Wildenberg, M. I. van Berge Henegouwen, P. van Duijvendijk, B. P. L. Wijnhoven, J. H. M. B. Stoot, M. Lacle, J. P. Ruurda, R. van Hillegersberg

Date Published: 31st Dec 2019

Publication Type: Not specified

Abstract

Not specified

Authors: Nikolaus Berndt, Antje Egners, Guido Mastrobuoni, Olga Vvedenskaya, Athanassios Fragoulis, Aurélien Dugourd, Sascha Bulik, Matthias Pietzke, Chris Bielow, Rob van Gassel, Steven W. Olde Damink, Merve Erdem, Julio Saez-Rodriguez, Hermann-Georg Holzhütter, Stefan Kempa, Thorsten Cramer

Date Published: 10th Dec 2019

Publication Type: Not specified

Abstract (Expand)

Patients with increased liver stiffness have a higher risk of developing cancer, however, the role of fluid-solid tissue interactions and their contribution to liver tumor malignancy remains elusive. Tomoelastography is a novel imaging method for mapping quantitatively the solid-fluid tissue properties of soft tissues in vivo. It provides high resolution and thus has clear clinical applications. In this work we used tomoelastography in 77 participants, with a total of 141 focal liver lesions of different etiologies, to investigate the contributions of tissue stiffness and fluidity to the malignancy of liver tumors. Shear-wave speed (c) as surrogate for tissue stiffness and phase-angle (phi) of the complex shear modulus reflecting tissue fluidity were abnormally high in malignant tumors and allowed them to be distinguished from nontumorous liver tissue with high accuracy [c: AUC = 0.88 with 95% confidence interval (CI) = 0.83-0.94; phi: AUC = 0.95, 95% CI = 0.92-0.98]. Benign focal nodular hyperplasia and hepatocellular adenoma could be distinguished from malignant lesions on the basis of tumor stiffness (AUC = 0.85, 95% CI = 0.72-0.98; sensitivity = 94%, 95% CI = 89-100; and specificity = 85%, 95% CI = 62-100), tumor fluidity (AUC = 0.86, 95% CI = 0.77-0.96; sensitivity = 83%, 95% CI = 72-93; and specificity = 92%, 95% CI = 77-100) and liver stiffness (AUC = 0.84, 95% CI = 0.74-0.94; sensitivity = 72%, 95% CI = 59-83; and specificity = 88%, 95% CI = 69-100), but not on the basis of liver fluidity. Together, hepatic malignancies are characterized by stiff, yet fluid tissue properties, whereas surrounding nontumorous tissue is dominated by solid properties. Tomoelastography can inform noninvasively on the malignancy of suspicious liver lesions by differentiating between benign and malignant lesions with high sensitivity based on stiffness and with high specificity based on fluidity. SIGNIFICANCE: Solid-fluid tissue properties measured by tomoelastography can distinguish malignant from benign masses with high accuracy and provide quantitative noninvasive imaging biomarkers for liver tumors.

Authors: M. Shahryari, H. Tzschatzsch, J. Guo, S. R. Marticorena Garcia, G. Boning, U. Fehrenbach, L. Stencel, P. Asbach, B. Hamm, J. A. Kas, J. Braun, T. Denecke, I. Sack

Date Published: 15th Nov 2019

Publication Type: Not specified

Abstract (Expand)

Globally, primary and secondary liver cancer is one of the most common cancer types, accounting 8.2% of deaths worldwide in 2018. One of the key strategies to improve the patient's prognosis is the early diagnosis, when liver function is still preserved. In hepatocellular carcinoma (HCC), the typical wash-in/wash-out pattern in conventional magnetic resonance imaging (MRI) reaches a sensitivity of 60% and specificity of 96-100%. However, in recent years functional MRI sequences such as hepatocellular-specific gadolinium-based dynamic-contrast enhanced MRI, diffusion-weighted imaging (DWI), and magnetic resonance spectroscopy (MRS) have been demonstrated to improve the evaluation of treatment success and thus the therapeutic decision-making and the patient's outcome. In the preclinical research setting, the VX2 liver rabbit tumor, which once originated from a virus-induced anaplastic squamous cell carcinoma, has played a longstanding role in experimental interventional oncology. Especially the high tumor vascularity allows assessing the treatment response of locoregional interventions such as radiofrequency ablation (RFA) and transcatheter arterial embolization (TACE). Functional MRI has been used to monitor the tumor growth and viability following interventional treatment. Besides promising results, a comprehensive overview of functional MRI sequences used so far in different treatment setting is lacking, thus lowering the comparability of study results. This review offers a comprehensive overview of study protocols, results, and limitations of quantitative MRI sequences applied to evaluate the treatment outcome of VX2 hepatic tumor models, thus generating a unique basis for future MRI studies and potential translation into the clinical setting. Level of Evidence: 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2019.

Authors: S. Keller, J. Chapiro, J. Brangsch, C. Reimann, F. Collettini, I. Sack, L. J. Savic, B. Hamm, S. N. Goldberg, M. Makowski

Date Published: 12th Nov 2019

Publication Type: Not specified

Abstract

Not specified

Authors: Rolf Reiter, Heiko Tzschätzsch, Florian Schwahofer, Matthias Haas, Christian Bayerl, Marion Muche, Dieter Klatt, Shreyan Majumdar, Meltem Uyanik, Bernd Hamm, Jürgen Braun, Ingolf Sack, Patrick Asbach

Date Published: 11th Nov 2019

Publication Type: Not specified

Abstract (Expand)

BACKGROUND: Hepatocellular carcinoma is the fifth most prevalent cancer worldwide. High tumour recurrence is the most common cause of the impaired 5-year survival rate of 26-58% after hepatectomy. The aim of this study was to investigate the impact of preoperative dynamic liver function on long-term outcome. MATERIALS AND METHODS: A total of 146 patients that underwent curative resection for HCC at our department from 2005 to 2016 were analysed. Univariate analysis was calculated using Kaplan-Meier method. Multivariable analysis was carried out with Cox regression. RESULTS: The cumulative 1-, 3-, 5-year survival rates were 83%, 42% and 14%, respectively. Multivariable Cox regression yielded that overall survival depends on disease recurrence, haemoglobin, number of tumours, liver cirrhosis, lymphatic vessel invasion, UICC stage and postoperative complications. The corresponding 1-, 3-, 5-year disease-free survival rates were 73%, 32% and 10%, respectively. Multivariable analysis yielded preoperative liver function capacity (HR 2.421; p=0.014), vascular invasion (HR 2.116; p=0.034) and UICC stage (HR 2.200; p=0.037) as risk factors associated with disease-free survival. A subanalysis with respect to the degree of functional impairment implicated that severity of liver function impairment is correlated with the disease-free survival rate. CONCLUSION: This study shows that preoperative dynamic liver function assessed by LiMAx test as well as severity of underlying liver disease have a significant impact on recurrence-free survival after curative hepatectomy. Patients presenting with impaired liver function should be evaluated for other treatment e.g. liver transplantation or receive closer oncological follow-up.

Authors: E. Bluthner, J. Bednarsch, M. Malinowski, P. Binder, J. Pratschke, M. Stockmann, M. Kaffarnik

Date Published: 9th Sep 2019

Publication Type: Not specified

Abstract (Expand)

Acute appendicitis is the most common cause of the acute abdomen syndrome and can be treated either surgically or conservatively with antibiotics. This case demonstrates the first time use of mechanics based MRI by tomoelastography with generation of quantitative maps of tissue stiffness (shear wave speed in m/s) and tissue fluidity (shear modulus loss angle, in rad) in a case of uncomplicated acute appendicitis with antibiotic treatment at (i) baseline, (ii) the end of treatment (EOT) and (iii) the 10 day follow-up after EOT. Baseline maps of stiffness and fluidity revealed to the naked eye the extent of intestinal inflammation by markedly increased values of stiffness and fluidity (2.56+/-0.12 m/s, 1.37+/-0.24 rad) compared with normal values, indicating the immediate response to antibiotic treatment at EOT (1.47+/-0.28 m/s, 0.80+/-0.11 rad) and persistent normalisation at follow-up (1.54+/-0.22 m/s, 0.92+/-0.22 rad). Tomoelastography is a non-invasive, quantitative imaging method for mechanics based characterisation and follow-up of acute appendicitis.

Authors: S. R. Marticorena Garcia, B. Hamm, I. Sack

Date Published: 26th Aug 2019

Publication Type: Not specified

Abstract (Expand)

Background Glomerulonephritis refers to renal diseases characterized by glomerular and tubulointerstitial fibrosis. Multifrequency US time-harmonic elastography enables the noninvasive quantification of tissue elasticity. Purpose To assess the diagnostic performance of US time-harmonic elastography for the early detection of glomerulonephritis. Materials and Methods From August 2016 through May 2017, study participants with biopsy-proven glomerulonephritis were prospectively examined with US time-harmonic elastography. Participants were subdivided according to chronic kidney disease (CKD) stage. All participants underwent elastography of both kidneys to generate full-field-of-view maps of renal shear wave speed (SWS). SWS was determined separately for the whole renal parenchyma, cortex, and medulla and was correlated with quantitative B-mode findings such as renal length and parenchymal thickness. Diagnostic performance of renal elastography was assessed with receiver operating characteristic curve analysis. Results Fifty-three participants with glomerulonephritis (mean age +/- standard deviation, 49 years +/- 14) and 30 healthy volunteers (mean age, 37 years +/- 11) were evaluated. Age-adjusted renal SWS was lower in participants with glomerulonephritis than in healthy volunteers in the parenchyma, cortex, and medulla, with mean values of 1.55 m/sec (95% confidence interval [CI]: 1.51 m/sec, 1.59 m/sec) and 1.69 m/sec (95% CI: 1.64 m/sec, 1.74 m/sec; P < .001), respectively, in parenchyma, 1.80 m/sec (95% CI: 1.75 m/sec, 1.84 m/sec) and 2.08 m/sec (95% CI: 2.02 m/sec, 2.13 m/sec; P < .001) in cortex, and 1.25 m/sec (95% CI: 1.21 m/sec, 1.29 m/sec) and 1.33 (95% CI: 1.27 m/sec, 1.38 m/sec; P = .03) in medulla. Age-adjusted renal cortex SWS was lower in participants with glomerulonephritis and stage 1 CKD (preserved renal function) than in healthy volunteers (mean, 1.88 [95% CI: 1.81, 1.96] vs 2.08 [95% CI: 2.02, 2.13]; P < .001). In participants with CKD, renal cortex SWS values showed a positive association with estimated glomerular filtration rate (n = 39; r = 0.56; P < .001). Exploratory diagnostic performance of US time-harmonic elastography (area under the receiver operating characteristic curve [AUC], 0.89; 95% CI: 0.82, 0.97) outperformed that of B-mode parameters such as parenchymal thickness (AUC, 0.64; 95% CI: 0.51, 0.77; P < .001) and renal length (AUC, 0.55; 95% CI: 0.40, 0.68; P < .001) in identifying glomerulonephritis. Conclusion US time-harmonic elastography depicts abnormal renal stiffness in glomerulonephritis, particularly among patients with early disease and preserved renal function. Advanced chronic kidney disease is associated with further cortical softening. Time-harmonic elastography outperforms B-mode-based size quantification. (c) RSNA, 2019 Online supplemental material is available for this article.

Authors: M. Grossmann, H. Tzschatzsch, S. T. Lang, J. Guo, A. Bruns, M. Durr, B. F. Hoyer, U. Grittner, M. Lerchbaumer, M. Nguyen Trong, M. Schultz, B. Hamm, J. Braun, I. Sack, S. R. Marticorena Garcia

Date Published: 10th Jul 2019

Publication Type: Journal

Abstract (Expand)

OBJECTIVES: The aim of this study was to noninvasively evaluate changes in renal stiffness, diffusion, and oxygenation in patients with chronic, advanced stage immunoglobulin A nephropathy (IgAN) by multiparametric magnetic resonance imaging using tomoelastography, diffusion-weighted imaging (DWI), and blood oxygen level-dependent (BOLD) imaging. MATERIALS AND METHODS: In this prospective study, 32 subjects (16 patients with biopsy-proven IgAN and 16 age- and sex-matched healthy controls) underwent multifrequency magnetic resonance elastography with tomoelastography postprocessing at 4 frequencies from 40 to 70 Hz to generate shear wave speed (meter per second) maps reflecting tissue stiffness. In addition, DWI and BOLD imaging were performed to determine the apparent diffusion coefficient in square millimeter per second and T2* relaxation time in milliseconds, respectively. Regions including the entire renal parenchyma of both kidneys were analyzed. Areas under the receiver operating characteristic (AUCs) curve were calculated to test diagnostic performance. Clinical parameters such as estimated glomerular filtration rate and protein-to-creatinine ratio were determined and correlated with imaging findings. RESULTS: Success rates of tomoelastography, DWI, and BOLD imaging regarding both kidneys were 100%, 91%, and 87%, respectively. Shear wave speed was decreased in IgAN (-21%, P < 0.0001), accompanied by lower apparent diffusion coefficient values (-12%, P = 0.004). BOLD imaging was not sensitive to IgAN (P = 0.12). Tomoelastography detected IgAN with higher diagnostic accuracy than DWI (area under the curve = 0.9 vs 0.8) and positively correlated with estimated glomerular filtration rate (r = 0.66, P = 0.006). CONCLUSIONS: Chronic, advanced stage IgAN is associated with renal softening and restricted water diffusion. Tomoelastography is superior to DWI and BOLD imaging in detecting IgAN.

Authors: S. T. Lang, J. Guo, A. Bruns, M. Durr, J. Braun, B. Hamm, I. Sack, S. R. Marticorena Garcia

Date Published: 2nd Jul 2019

Publication Type: Not specified

Abstract (Expand)

Human hepatocellular carcinoma (HCC) is the most common type of primary liver cancer in adults and the most common cause of death in people with cirrhosis. While previous metabolic studies of HCC have mainly focused on the glucose metabolism (Warburg effect), less attention has been paid to tumor-specific features of the lipid metabolism. Here, we applied a computational approach to analyze major pathways of fatty acid utilization in individual HCC. To this end, we used protein intensity profiles of eleven human HCCs to parameterize tumor-specific kinetic models of cellular lipid metabolism including formation, enlargement, and degradation of lipid droplets (LDs). Our analysis reveals significant inter-tumor differences in the lipid metabolism. The majority of HCCs show a reduced uptake of fatty acids and decreased rate of beta-oxidation, however, some HCCs display a completely different metabolic phenotype characterized by high rates of beta-oxidation. Despite reduced fatty acid uptake in the majority of HCCs, the content of triacylglycerol is significantly enlarged compared to the tumor-adjacent tissue. This is due to tumor-specific expression profiles of regulatory proteins decorating the surface of LDs and controlling their turnover. Our simulations suggest that HCCs characterized by a very high content of triglycerides comprise regulatory peculiarities that render them susceptible to selective drug targeting without affecting healthy tissue.

Authors: N. Berndt, J. Eckstein, Niklas Heucke, R. Gajowski, M. Stockmann, D. Meierhofer, H. G. Holzhutter

Date Published: 27th May 2019

Publication Type: Not specified

Abstract (Expand)

Background: Fibronectin type III domain-containing (FNDC) proteins fulfill manifold functions in tissue development and regulation of cellular metabolism. FNDC4 was described as anti-inflammatory factor, upregulated in inflammatory bowel disease (IBD). FNDC signaling includes direct cell-cell interaction as well as release of bioactive peptides, like shown for FNDC4 or FNDC5. The G-protein-coupled receptor 116 (GPR116) was found as a putative FNDC4 receptor. We here aim to comprehensively analyze the mRNA expression of FNDC1, FNDC3A, FNDC3B, FNDC4, FNDC5, and GPR116 in nonaffected and affected mucosal samples of patients with IBD or colorectal cancer (CRC). Methods: Mucosa samples were obtained from 30 patients undergoing diagnostic colonoscopy or from surgical resection of IBD or CRC. Gene expression was determined by quantitative real-time PCR. In addition, FNDC expression data from publicly available Gene Expression Omnibus (GEO) data sets (GDS4296, GDS4515, and GDS5232) were analyzed. Results: Basal mucosal expression revealed higher expression of FNDC3A and FNDC5 in the ileum compared to colonic segments. FNDC1 and FNDC4 were significantly upregulated in IBD. None of the investigated FNDCs was differentially expressed in CRC, just FNDC3A trended to be upregulated. The GEO data set analysis revealed significantly downregulated FNDC4 and upregulated GPR116 in microsatellite unstable (MSI) CRCs. The expression of FNDCs and GPR116 was independent of age and sex. Conclusions: FNDC1 and FNDC4 may play a relevant role in the pathobiology of IBD, but none of the investigated FNDCs is regulated in CRC. GPR116 may be upregulated in advanced or MSI CRC. Further studies should validate the altered FNDC expression results on protein levels and examine the corresponding functional consequences.

Authors: T. Wuensch, J. Wizenty, J. Quint, W. Spitz, M. Bosma, O. Becker, A. Adler, W. Veltzke-Schlieker, M. Stockmann, S. Weiss, M. Biebl, J. Pratschke, F. Aigner

Date Published: 17th May 2019

Publication Type: Not specified

Abstract (Expand)

Microscopic structural alterations of liver tissue induced by freeze-thaw cycles give rise to palpable property changes. However, the underlying damage to tissue architecture is difficult to quantify histologically, and published data on macroscopic changes in biophysical properties are sparse. To better understand the influence of hepatic cells and stroma on global biophysical parameters, we studied rat liver specimens freshly taken (within 30min after death) and treated by freeze-thaw cycles overnight at either -20 degrees C or -80 degrees C using diffusion-weighted imaging (DWI) and multifrequency magnetic resonance elastography (MRE) performed at 0.5T in a tabletop MRE scanner. Tissue structure was analyzed histologically and rheologic data were analyzed using fractional order derivatives conceptualized by a called spring-pot component that interpolates between pure elastic and viscous responses. Overnight freezing and thawing induced membrane disruptions and cell detachment in the space of Disse, resulting in a markedly lower shear modulus mu and apparent diffusion coefficient (ADC) (mu[-20 degrees C]=1.23+/-0.73kPa, mu[-80 degrees C]=0.66+/-0.75kPa; ADC[-20 degrees C]=0.649+/-0.028mum(2)/s, ADC[-80 degrees C]=0.626+/-0.025mum(2)/s) compared to normal tissue (mu=9.92+/-3.30kPa, ADC=0.770+/-0.023mum(2)/s, all p<0.001). Furthermore, we analyzed the springpot-powerlaw coefficient and observed a reduction in -20 degrees C specimens (0.22+/-0.14) compared to native tissue (0.40+/-0.10, p=0.033) and -80 degrees C specimens (0.54+/-0.22, p=0.002), that correlated with histological observations of sinusoidal dilation and collagen distortion within the space of Disse. Overall, the results suggest that shear modulus and water diffusion in liver tissue markedly decrease due to cell membrane degradation and cell detachment while viscosity-related properties appear to be more sensitive to distorted stromal and microvascular architecture.

Authors: A. A. de Schellenberger, H. Tzschatzsch, B. Polchlopek, G. Bertalan, F. Schrank, K. Garczynska, P. A. Janmey, J. Braun, I. Sack

Date Published: 9th May 2019

Publication Type: Not specified

Abstract (Expand)

OBJECTIVES: Today, nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in children and adults alike. Yet, the noninvasive evaluation of disease severity remains a diagnosticc challenge. In this study, we apply multifrequency magnetic resonance elastography (mMRE) for the quantification of liver steatosis and fibrosis in adolescents with NAFLD. METHODS: Fifty adolescents (age range, 10-17 years; mean BMI, 33.9 kg/m; range, 21.4-42.1 kg/m) with biopsy-proven NAFLD were included in this prospective study. Multifrequency magnetic resonance elastography was performed using external multifrequency vibrations of 30 to 60 Hz and tomoelastography postprocessing, resulting in penetration rate (a) and shear wave speed (c). Hepatic fat fraction was determined using Dixon method. The diagnostic accuracy of mMRE in grading liver steatosis and staging liver fibrosis was assessed by receiver operating characteristic curve analysis. RESULTS: Multifrequency magnetic resonance elastography parameters c and a were independently sensitive to fibrosis and steatosis, respectively, providing area under the receiver operating characteristic values of 0.79 (95% confidence interval [CI], 0.66-0.92), 0.91 (95% CI, 0.83-0.99), and 0.90 (95% CI, 0.80-0.99) for the detection of any (≥F1), moderate (≥F2), and advanced (≥F3) fibrosis, and 0.87 (95% CI, 0.76-0.97) and 0.87 (95% CI, 0.77-0.96) for the detection of moderate (≥S2) and severe (S3) steatosis. CONCLUSIONS: One mMRE measurement provides 2 independent parameters with very good diagnostic accuracy in detecting moderate and advanced fibrosis as well as moderate and severe steatosis in pediatric NAFLD.

Authors: Christian A. Hudert, Heiko Tzschätzsch, Birgit Rudolph, Hendrik Bläker, Christoph Loddenkemper, Hans-Peter Müller, Stephan Henning, Philip Bufler, Bernd Hamm, Jürgen Braun, Hermann-Georg Holzhütter, Susanna Wiegand, Ingolf Sack, Jing Guo

Date Published: 1st Apr 2019

Publication Type: Not specified

Abstract (Expand)

BACKGROUND & AIMS: Prolonged preoperative fasting periods lead to catabolic states and decelerate recovery after surgery. Valid plasma markers reflecting the patients' metabolic state may improve tailored nutrition support before surgery. Within this study, we sought to advance the knowledge on fasting time-sensitive plasma markers that allow the metabolic characterisation of surgical patients for an optimised preoperative metabolic preparation. METHODS: Patients scheduled for elective surgery of the upper (n = 23) or lower (n = 27) gastrointestinal tract participated in a prospective observational study. Patients' charateristics and nutritional status were recorded and blood samples were drawn on the day of admission. Further blood samples were collected before skin incision of the surgical procedure, on postoperative day 3 and on the day of discharge. Values of clinical chemistry, electrolytes, hemograms and plasma amino acids were determined and correlated with fasting times. RESULTS: Preoperative fasting times were positively correlated with plasma levels of valine, leucine, serine, alpha-amino butyric acid, free fatty acids, 3-hydroxy butyric acid and significantly negative correlated with chloride and glutamic acid. Postoperative fasting times were correlated with erythrocytes, leukocytes and plasma levels of albumin, CRP, HDL, asparagine and 3-methylhistidine. The multivariate regression analysis revealed glutamic acid and valine as significant independent predictors of preoperative fasting periods. The regression model showed best performance (sensitivity of 90.91% and specificity of 92.31%) to detect patients fasted for >/=20 h. CONCLUSION: Valine and glutamic acid appear as independent metabolic markers for accurate prediction of prolonged fasting periods, independent of the overall nutritional status, age or BMI of patients.

Authors: T. Wuensch, J. Quint, V. Mueller, A. Mueller, J. Wizenty, M. Kaffarnik, B. Kern, M. Stockmann, M. Biebl, J. Pratschke, F. Aigner

Date Published: 25th Mar 2019

Publication Type: Not specified

Abstract (Expand)

OBJECTIVES: Predicting post-hepatectomy liver failure (PHLF) after extended right hepatectomy following portal vein embolization (PVE) from serial gadoxetic acid-enhanced magnetic resonance imaging (MRI). METHODS: Thirty-six patients who underwent hepatectomy following PVE were evaluated prospectively with gadoxetic acid-enhanced MRI examinations at predefined intervals during the course of their treatment, i.e., before and 14 days and 28 days after PVE as well as 10 days after hepatectomy. Relative enhancement (RE) and volume of the left and right liver lobes were determined. The study population was divided into two groups with respect to signs of PHLF. Differences between the two groups were assessed using the Mann-Whitney U test, and predictive parameters for group membership were investigated using ROC and logistic regression analysis. RESULTS: RE of the left lobe prior to PVE versus 14 days after PVE was significantly lower in patients with PHLF than in those without PHLF (Mann-Whitney U test p < 0.001) and proved to be the best predictor of PHLF in ROC analysis with an AUC of 0.854 (p < 0.001) and a cutoff value of - 0.044 with 75.0% sensitivity and 92.6% specificity. Consistent with this result, logistic linear regression analysis adjusted for age identified the same parameter to be a significant predictor of PHLF (p = 0.040). CONCLUSIONS: Gadoxetic acid-enhanced MRI performed as an imaging-based liver function test before and after PVE can help to predict PHLF. The risk of PHLF can be predicted as early as 14 days after PVE. KEY POINTS: * To predict the likelihood of post-hepatectomy liver failure, it is important to estimate not only future liver remnant volume prior to extended liver resection but also future liver remnant function. * Future liver remnant function can be predicted by performing gadoxetic acid-enhanced MRI as an imaging-based liver function test before and after portal vein embolization. * A reduction of relative enhancement of the liver in gadoxetic acid-enhanced MRI after portal vein embolization of 0.044 predicts post-hepatectomy liver failure with 75.0% sensitivity and 92.6% specificity.

Authors: D. Theilig, I. Steffen, M. Malinowski, M. Stockmann, D. Seehofer, J. Pratschke, B. Hamm, T. Denecke, D. Geisel

Date Published: 23rd Mar 2019

Publication Type: Not specified

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH