Publications

What is a Publication?
5 Publications visible to you, out of a total of 5

Abstract (Expand)

The principle of dynamic liver function breath tests is founded on the administration of a (13)C-labeled drug and subsequent monitoring of (13)CO2 in the breath, quantified as time series delta over natural baseline (13)CO2 (DOB) liberated from the drug during hepatic CYP-dependent detoxification. One confounding factor limiting the diagnostic value of such tests is that only a fraction of the liberated (13)CO2 is immediately exhaled, while another fraction is taken up by body compartments from which it returns with delay to the plasma. The aims of this study were to establish a novel variant of the methacetin-based breath test LiMAx that allows to estimate and to eliminate the confounding effect of systemic (13)CO2 distribution on the DOB curve and thus enables a more reliable assessment of the hepatic detoxification capacity compared with the conventional LiMAx test. We designed a new test variant (named "2DOB") consisting of two consecutive phases. Phase 1 is initiated by the intravenous administration of (13)C-bicarbonate. Phase 2 starts about 30 min later with the intravenous administration of the (13)C-labelled test drug. Using compartment modelling, the resulting 2-phasic DOB curve yields the rate constants for the irreversible elimination and the reversible exchange of plasma (13)CO2 with body compartments (phase 1) and for the detoxification and exchange of the drug with body compartments (phase 2). We carried out the 2DOB test with the test drug (13)C-methacetin in 16 subjects with chronic liver pathologies and 22 normal subjects, who also underwent the conventional LiMAx test. Individual differences in the systemic CO2 kinetics can lead to deviations up to a factor of 2 in the maximum of DOB curves (coefficient of variation CV approximately 0.2) which, in particular, may hamper the discrimination between subjects with normal or mildly impaired detoxification capacities. The novel test revealed that a significant portion of the drug is not immediately metabolized, but transiently taken up into a storage compartment. Intriguingly, not only the hepatic detoxification rate but also the storage capacity of the drug, turned out to be indicative for a normal liver function. We thus used both parameters to define a scoring function which yielded an excellent disease classification (AUC = 0.95) and a high correlation with the MELD score (RSpearman = 0.92). The novel test variant 2DOB promises a significant improvement in the assessment of impaired hepatic detoxification capacity. The suitability of the test for the reliable characterization of the natural history of chronic liver diseases (fatty liver-fibrosis-cirrhosis) has to be assessed in further studies.

Authors: H. G. Holzhutter, T. Wuensch, R. Gajowski, N. Berndt, S. Bulik, D. Meierhofer, M. Stockmann

Date Published: 6th Feb 2020

Publication Type: Not specified

Abstract

Not specified

Authors: Nikolaus Berndt, Antje Egners, Guido Mastrobuoni, Olga Vvedenskaya, Athanassios Fragoulis, Aurélien Dugourd, Sascha Bulik, Matthias Pietzke, Chris Bielow, Rob van Gassel, Steven W. Olde Damink, Merve Erdem, Julio Saez-Rodriguez, Hermann-Georg Holzhütter, Stefan Kempa, Thorsten Cramer

Date Published: 10th Dec 2019

Publication Type: Not specified

Abstract (Expand)

The epidemic increase of non-alcoholic fatty liver diseases (NAFLD) requires a deeper understanding of the regulatory circuits controlling the response of liver metabolism to nutritional challenges, medical drugs, and genetic enzyme variants. As in vivo studies of human liver metabolism are encumbered with serious ethical and technical issues, we developed a comprehensive biochemistry-based kinetic model of the central liver metabolism including the regulation of enzyme activities by their reactants, allosteric effectors, and hormone-dependent phosphorylation. The utility of the model for basic research and applications in medicine and pharmacology is illustrated by simulating diurnal variations of the metabolic state of the liver at various perturbations caused by nutritional challenges (alcohol), drugs (valproate), and inherited enzyme disorders (galactosemia). Using proteomics data to scale maximal enzyme activities, the model is used to highlight differences in the metabolic functions of normal hepatocytes and malignant liver cells (adenoma and hepatocellular carcinoma).

Authors: N. Berndt, S. Bulik, I. Wallach, T. Wunsch, M. Konig, M. Stockmann, D. Meierhofer, H. G. Holzhutter

Date Published: 21st Jun 2018

Publication Type: Not specified

Abstract (Expand)

The capacity of the liver to convert the metabolic input received from the incoming portal and arterial blood into the metabolic output of the outgoing venous blood has three major determinants: The intra-hepatic blood flow, the transport of metabolites between blood vessels (sinusoids) and hepatocytes and the metabolic capacity of hepatocytes. These determinants are not constant across the organ: Even in the normal organ, but much more pronounced in the fibrotic and cirrhotic liver, regional variability of the capillary blood pressure, tissue architecture and the expression level of metabolic enzymes (zonation) have been reported. Understanding how this variability may affect the regional metabolic capacity of the liver is important for the interpretation of functional liver tests and planning of pharmacological and surgical interventions. Here we present a mathematical model of the sinusoidal tissue unit (STU) that is composed of a single sinusoid surrounded by the space of Disse and a monolayer of hepatocytes. The total metabolic output of the liver (arterio-venous glucose difference) is obtained by integration across the metabolic output of a representative number of STUs. Application of the model to the hepatic glucose metabolism provided the following insights: (i) At portal glucose concentrations between 6-8 mM, an intra-sinusoidal glucose cycle may occur which is constituted by glucose producing periportal hepatocytes and glucose consuming pericentral hepatocytes, (ii) Regional variability of hepatic blood flow is higher than the corresponding regional variability of the metabolic output, (iii) a spatially resolved metabolic functiogram of the liver is constructed. Variations of tissue parameters are equally important as variations of enzyme activities for the control of the arterio-venous glucose difference.

Authors: N. Berndt, M. S. Horger, S. Bulik, H. G. Holzhutter

Date Published: 16th Feb 2018

Publication Type: Not specified

Abstract (Expand)

BACKGROUND: Adaptation of the cellular metabolism to varying external conditions is brought about by regulated changes in the activity of enzymes and transporters. Hormone-dependent reversible enzyme phosphorylation and concentration changes of reactants and allosteric effectors are the major types of rapid kinetic enzyme regulation, whereas on longer time scales changes in protein abundance may also become operative. Here, we used a comprehensive mathematical model of the hepatic glucose metabolism of rat hepatocytes to decipher the relative importance of different regulatory modes and their mutual interdependencies in the hepatic control of plasma glucose homeostasis. RESULTS: Model simulations reveal significant differences in the capability of liver metabolism to counteract variations of plasma glucose in different physiological settings (starvation, ad libitum nutrient supply, diabetes). Changes in enzyme abundances adjust the metabolic output to the anticipated physiological demand but may turn into a regulatory disadvantage if sudden unexpected changes of the external conditions occur. Allosteric and hormonal control of enzyme activities allow the liver to assume a broad range of metabolic states and may even fully reverse flux changes resulting from changes of enzyme abundances alone. Metabolic control analysis reveals that control of the hepatic glucose metabolism is mainly exerted by enzymes alone, which are differently controlled by alterations in enzyme abundance, reversible phosphorylation, and allosteric effects. CONCLUSION: In hepatic glucose metabolism, regulation of enzyme activities by changes of reactants, allosteric effects, and reversible phosphorylation is equally important as changes in protein abundance of key regulatory enzymes.

Authors: S. Bulik, H. G. Holzhutter, N. Berndt

Date Published: 2nd Mar 2016

Publication Type: Not specified

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH