Publications

What is a Publication?
2 Publications matching the given criteria: (Clear all filters)

Abstract (Expand)

BACKGROUND & AIMS: In chronic liver diseases, inflammation induces oxidative stress and thus may contribute to the progression of liver injury, fibrosis, and carcinogenesis. The KEAP1/NRF2 axis is a major regulator of cellular redox balance. In the present study, we investigated whether the KEAP1/NRF2 system is involved in liver disease progression in humans and mice. METHODS: The clinical relevance of oxidative stress was investigated by liver RNA sequencing in a well-characterized cohort of patients with non-alcoholic fatty liver disease (n = 63) and correlated with histological and clinical parameters. For functional analysis, hepatocyte-specific Nemo knockout (NEMO(Deltahepa)) mice were crossed with hepatocyte-specific Keap1 knockout (KEAP1(Deltahepa)) mice. RESULTS: Immunohistochemical analysis of human liver sections showed increased oxidative stress and high NRF2 expression in patients with chronic liver disease. RNA sequencing of liver samples in a human pediatric NAFLD cohort revealed a significant increase of NRF2 activation correlating with the grade of inflammation, but not with the grade of steatosis, which could be confirmed in a second adult NASH cohort. In mice, microarray analysis revealed that Keap1 deletion induces NRF2 target genes involved in glutathione metabolism and xenobiotic stress (e.g., Nqo1). Furthermore, deficiency of one of the most important antioxidants, glutathione (GSH), in NEMO(Deltahepa) livers was rescued after deleting Keap1. As a consequence, NEMO(Deltahepa)/KEAP1(Deltahepa) livers showed reduced apoptosis compared to NEMO(Deltahepa) livers as well as a dramatic downregulation of genes involved in cell cycle regulation and DNA replication. Consequently, NEMO(Deltahepa)/KEAP1(Deltahepa) compared to NEMO(Deltahepa) livers displayed decreased fibrogenesis, lower tumor incidence, reduced tumor number, and decreased tumor size. CONCLUSIONS: NRF2 activation in patients with non-alcoholic steatohepatitis correlates with the grade of inflammation, but not steatosis. Functional analysis in mice demonstrated that NRF2 activation in chronic liver disease is protective by ameliorating fibrogenesis, initiation and progression of hepatocellular carcinogenesis. LAY SUMMARY: The KEAP1 (Kelch-like ECH-associated protein-1)/NRF2 (erythroid 2-related factor 2) axis has a major role in regulating cellular redox balance. Herein, we show that NRF2 activity correlates with the grade of inflammation in patients with non-alcoholic steatohepatitis. Functional studies in mice actually show that NRF2 activation, resulting from KEAP1 deletion, protects against fibrosis and cancer.

Authors: A. Mohs, T. Otto, K. M. Schneider, M. Peltzer, M. Boekschoten, C. H. Holland, C. A. Hudert, L. Kalveram, S. Wiegand, J. Saez-Rodriguez, T. Longerich, J. G. Hengstler, C. Trautwein

Date Published: 22nd Dec 2020

Publication Type: Journal

Abstract (Expand)

Little is known about how liver fibrosis influences lobular zonation. To address this question, we used three mouse models of liver fibrosis, repeated CCl4 administration for 2, 6 and 12 months to induce pericentral damage, as well as bile duct ligation (21 days) and mdr2−/− mice to study periportal fibrosis. Analyses were performed by RNA-sequencing, immunostaining of zonated proteins and image analysis. RNA-sequencing demonstrated a significant enrichment of pericentral genes among genes downregulated by CCl4; vice versa, periportal genes were enriched among the upregulated genes. Immunostaining showed an almost complete loss of pericentral proteins, such as cytochrome P450 enzymes and glutamine synthetase, while periportal proteins, such as arginase 1 and CPS1 became expressed also in pericentral hepatocytes. This pattern of fibrosis-associated ‘periportalization’ was consistently observed in all three mouse models and led to complete resistance to hepatotoxic doses of acetaminophen (200 mg/kg). Characterization of the expression response identified the inflammatory pathways TGFβ, NFκB, TNFα, and transcription factors NFKb1, Stat1, Hif1a, Trp53, and Atf1 among those activated, while estrogen-associated pathways, Hnf4a and Hnf1a, were decreased. In conclusion, liver fibrosis leads to strong alterations of lobular zonation, where the pericentral region adopts periportal features. Beside adverse consequences, periportalization supports adaptation to repeated doses of hepatotoxic compounds.

Authors: Ahmed Ghallab, Maiju Myllys, Christian Holland, Ayham Zaza, Walaa Murad, Reham Hassan, Yasser A Ahmed, Tahany Abbas, Eman Abdelrahim, Kai Markus Schneider, Madlen Matz-Soja, Joerg Reinders, Rolf Gebhardt, Theresa Hildegard Wirtz, Maximilian Hatting, Dirk Drasdo, Julio Saez-Rodriguez, Christian Trautwein, Jan Hengstler

Date Published: 1st Dec 2019

Publication Type: Not specified

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH