Publications

What is a Publication?
4 Publications matching the given criteria: (Clear all filters)

Abstract (Expand)

Metabolic reprogramming is a characteristic feature of cancer cells, but there is no unique metabolic program for all tumors. Genetic and gene expression studies have revealed heterogeneous inter- and intratumor patterns of metabolic enzymes and membrane transporters. The functional implications of this heterogeneity remain often elusive. Here, we applied a systems biology approach to gain a comprehensive and quantitative picture of metabolic changes in individual hepatocellular carcinoma (HCC). We used protein intensity profiles determined by mass spectrometry in samples of 10 human HCCs and the adjacent noncancerous tissue to calibrate Hepatokin1, a complex mathematical model of liver metabolism. We computed the 24-h profile of 18 metabolic functions related to carbohydrate, lipid, and nitrogen metabolism. There was a general tendency among the tumors toward downregulated glucose uptake and glucose release albeit with large intertumor variability. This finding calls into question that the Warburg effect dictates the metabolic phenotype of HCC. All tumors comprised elevated beta-oxidation rates. Urea synthesis was found to be consistently downregulated but without compromising the tumor's capacity for ammonia detoxification owing to increased glutamine synthesis. The largest intertumor heterogeneity was found for the uptake and release of lactate and the size of the cellular glycogen content. In line with the observed metabolic heterogeneity, the individual HCCs differed largely in their vulnerability against pharmacological treatment with metformin. Taken together, our approach provided a comprehensive and quantitative characterization of HCC metabolism that may pave the way for a computational a priori assessment of pharmacological therapies targeting metabolic processes of HCC.

Authors: N. Berndt, J. Eckstein, Niklas Heucke, T. Wuensch, R. Gajowski, M. Stockmann, D. Meierhofer, H. G. Holzhutter

Date Published: 8th Oct 2020

Publication Type: Journal

Abstract (Expand)

The principle of dynamic liver function breath tests is founded on the administration of a (13)C-labeled drug and subsequent monitoring of (13)CO2 in the breath, quantified as time series delta over natural baseline (13)CO2 (DOB) liberated from the drug during hepatic CYP-dependent detoxification. One confounding factor limiting the diagnostic value of such tests is that only a fraction of the liberated (13)CO2 is immediately exhaled, while another fraction is taken up by body compartments from which it returns with delay to the plasma. The aims of this study were to establish a novel variant of the methacetin-based breath test LiMAx that allows to estimate and to eliminate the confounding effect of systemic (13)CO2 distribution on the DOB curve and thus enables a more reliable assessment of the hepatic detoxification capacity compared with the conventional LiMAx test. We designed a new test variant (named "2DOB") consisting of two consecutive phases. Phase 1 is initiated by the intravenous administration of (13)C-bicarbonate. Phase 2 starts about 30 min later with the intravenous administration of the (13)C-labelled test drug. Using compartment modelling, the resulting 2-phasic DOB curve yields the rate constants for the irreversible elimination and the reversible exchange of plasma (13)CO2 with body compartments (phase 1) and for the detoxification and exchange of the drug with body compartments (phase 2). We carried out the 2DOB test with the test drug (13)C-methacetin in 16 subjects with chronic liver pathologies and 22 normal subjects, who also underwent the conventional LiMAx test. Individual differences in the systemic CO2 kinetics can lead to deviations up to a factor of 2 in the maximum of DOB curves (coefficient of variation CV approximately 0.2) which, in particular, may hamper the discrimination between subjects with normal or mildly impaired detoxification capacities. The novel test revealed that a significant portion of the drug is not immediately metabolized, but transiently taken up into a storage compartment. Intriguingly, not only the hepatic detoxification rate but also the storage capacity of the drug, turned out to be indicative for a normal liver function. We thus used both parameters to define a scoring function which yielded an excellent disease classification (AUC = 0.95) and a high correlation with the MELD score (RSpearman = 0.92). The novel test variant 2DOB promises a significant improvement in the assessment of impaired hepatic detoxification capacity. The suitability of the test for the reliable characterization of the natural history of chronic liver diseases (fatty liver-fibrosis-cirrhosis) has to be assessed in further studies.

Authors: H. G. Holzhutter, T. Wuensch, R. Gajowski, N. Berndt, S. Bulik, D. Meierhofer, M. Stockmann

Date Published: 6th Feb 2020

Publication Type: Not specified

Abstract (Expand)

Human hepatocellular carcinoma (HCC) is the most common type of primary liver cancer in adults and the most common cause of death in people with cirrhosis. While previous metabolic studies of HCC have mainly focused on the glucose metabolism (Warburg effect), less attention has been paid to tumor-specific features of the lipid metabolism. Here, we applied a computational approach to analyze major pathways of fatty acid utilization in individual HCC. To this end, we used protein intensity profiles of eleven human HCCs to parameterize tumor-specific kinetic models of cellular lipid metabolism including formation, enlargement, and degradation of lipid droplets (LDs). Our analysis reveals significant inter-tumor differences in the lipid metabolism. The majority of HCCs show a reduced uptake of fatty acids and decreased rate of beta-oxidation, however, some HCCs display a completely different metabolic phenotype characterized by high rates of beta-oxidation. Despite reduced fatty acid uptake in the majority of HCCs, the content of triacylglycerol is significantly enlarged compared to the tumor-adjacent tissue. This is due to tumor-specific expression profiles of regulatory proteins decorating the surface of LDs and controlling their turnover. Our simulations suggest that HCCs characterized by a very high content of triglycerides comprise regulatory peculiarities that render them susceptible to selective drug targeting without affecting healthy tissue.

Authors: N. Berndt, J. Eckstein, Niklas Heucke, R. Gajowski, M. Stockmann, D. Meierhofer, H. G. Holzhutter

Date Published: 27th May 2019

Publication Type: Not specified

Abstract (Expand)

The epidemic increase of non-alcoholic fatty liver diseases (NAFLD) requires a deeper understanding of the regulatory circuits controlling the response of liver metabolism to nutritional challenges, medical drugs, and genetic enzyme variants. As in vivo studies of human liver metabolism are encumbered with serious ethical and technical issues, we developed a comprehensive biochemistry-based kinetic model of the central liver metabolism including the regulation of enzyme activities by their reactants, allosteric effectors, and hormone-dependent phosphorylation. The utility of the model for basic research and applications in medicine and pharmacology is illustrated by simulating diurnal variations of the metabolic state of the liver at various perturbations caused by nutritional challenges (alcohol), drugs (valproate), and inherited enzyme disorders (galactosemia). Using proteomics data to scale maximal enzyme activities, the model is used to highlight differences in the metabolic functions of normal hepatocytes and malignant liver cells (adenoma and hepatocellular carcinoma).

Authors: N. Berndt, S. Bulik, I. Wallach, T. Wunsch, M. Konig, M. Stockmann, D. Meierhofer, H. G. Holzhutter

Date Published: 21st Jun 2018

Publication Type: Not specified

Powered by
(v.1.16.1)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH