Publications

What is a Publication?
3 Publications visible to you, out of a total of 3

Abstract (Expand)

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in children and adolescents. About 30% of patients with NAFLD progress to the more severe condition of nonalcoholic steatohepatitis (NASH), which is typically diagnosed using liver biopsy. Liver stiffness (LS) quantified by elastography is a promising imaging marker for the noninvasive assessment of NAFLD and NASH in pediatric patients. However, the link between LS and specific histopathologic features used for clinical staging of NAFLD is not well defined. Furthermore, LS data reported in the literature can vary greatly due to the use of different measurement techniques. Uniquely, time-harmonic elastography (THE) based on ultrasound and magnetic resonance elastography (MRE) use the same mechanical stimulation, allowing us to compare LS in biopsy-proven NAFLD previously determined by THE and MRE in 67 and 50 adolescents, respectively. In the present work, we analyzed the influence of seven distinct histopathologic features on LS, including septal infiltration, bridging fibrosis, pericellular fibrosis, hepatocellular ballooning, portal inflammation, lobular inflammation, and steatosis. LS was highly correlated with periportal and lobular fibrosis as well as hepatocellular ballooning while no independent association was found for inflammation and steatosis. Based on this analysis, we propose a composite elastography score (CES) which includes the four key histopathologic features identified as mechanically relevant. Interestingly, CES-relevant histopathologic features were associated with zonal distribution patterns of pediatric NAFLD. Mechano-structural changes associated with NAFLD progression can be histopathologically staged using the CES, which is easily determined noninvasively based on LS measured by time-harmonic elastography.

Authors: C. A. Hudert, H. Tzschatzsch, B. Rudolph, C. Loddenkemper, H. G. Holzhutter, L. Kalveram, S. Wiegand, J. Braun, I. Sack, J. Guo

Date Published: 17th Jan 2021

Publication Type: Journal

Abstract (Expand)

Non-alcoholic fatty liver disease (NAFLD) is a significant health burden in obese children for which there is currently no specific therapy. Preclinical studies indicate that epoxyeicosanoids, a class of bioactive lipid mediators that are generated by cytochrome P450 (CYP) epoxygenases and inactivated by the soluble epoxide hydrolase (sEH), play a protective role in NAFLD. We performed a comprehensive lipidomics analysis using liver tissue and blood samples of 40 children with NAFLD. Proteomics was performed to determine CYP epoxygenase and sEH expressions. Hepatic epoxyeicosanoids significantly increased with higher grades of steatosis, while their precursor PUFAs were unaltered. Concomitantly, total CYP epoxygenase activity increased while protein level and activity of sEH decreased. In contrast, hepatic epoxyeicosanoids showed a strong decreasing trend with higher stages of fibrosis, accompanied by a decrease of CYP epoxygenase activity and protein expression. These findings suggest that the CYP epoxygenase/sEH pathway represents a potential pharmacologic target for the treatment of NAFLD.

Authors: L. Kalveram, W. H. Schunck, M. Rothe, B. Rudolph, C. Loddenkemper, H. G. Holzhutter, S. Henning, P. Bufler, M. Schulz, D. Meierhofer, I. W. Zhang, K. H. Weylandt, S. Wiegand, C. A. Hudert

Date Published: 4th Jan 2021

Publication Type: Journal

Abstract (Expand)

BACKGROUND & AIMS: In chronic liver diseases, inflammation induces oxidative stress and thus may contribute to the progression of liver injury, fibrosis, and carcinogenesis. The KEAP1/NRF2 axis is a major regulator of cellular redox balance. In the present study, we investigated whether the KEAP1/NRF2 system is involved in liver disease progression in humans and mice. METHODS: The clinical relevance of oxidative stress was investigated by liver RNA sequencing in a well-characterized cohort of patients with non-alcoholic fatty liver disease (n = 63) and correlated with histological and clinical parameters. For functional analysis, hepatocyte-specific Nemo knockout (NEMO(Deltahepa)) mice were crossed with hepatocyte-specific Keap1 knockout (KEAP1(Deltahepa)) mice. RESULTS: Immunohistochemical analysis of human liver sections showed increased oxidative stress and high NRF2 expression in patients with chronic liver disease. RNA sequencing of liver samples in a human pediatric NAFLD cohort revealed a significant increase of NRF2 activation correlating with the grade of inflammation, but not with the grade of steatosis, which could be confirmed in a second adult NASH cohort. In mice, microarray analysis revealed that Keap1 deletion induces NRF2 target genes involved in glutathione metabolism and xenobiotic stress (e.g., Nqo1). Furthermore, deficiency of one of the most important antioxidants, glutathione (GSH), in NEMO(Deltahepa) livers was rescued after deleting Keap1. As a consequence, NEMO(Deltahepa)/KEAP1(Deltahepa) livers showed reduced apoptosis compared to NEMO(Deltahepa) livers as well as a dramatic downregulation of genes involved in cell cycle regulation and DNA replication. Consequently, NEMO(Deltahepa)/KEAP1(Deltahepa) compared to NEMO(Deltahepa) livers displayed decreased fibrogenesis, lower tumor incidence, reduced tumor number, and decreased tumor size. CONCLUSIONS: NRF2 activation in patients with non-alcoholic steatohepatitis correlates with the grade of inflammation, but not steatosis. Functional analysis in mice demonstrated that NRF2 activation in chronic liver disease is protective by ameliorating fibrogenesis, initiation and progression of hepatocellular carcinogenesis. LAY SUMMARY: The KEAP1 (Kelch-like ECH-associated protein-1)/NRF2 (erythroid 2-related factor 2) axis has a major role in regulating cellular redox balance. Herein, we show that NRF2 activity correlates with the grade of inflammation in patients with non-alcoholic steatohepatitis. Functional studies in mice actually show that NRF2 activation, resulting from KEAP1 deletion, protects against fibrosis and cancer.

Authors: A. Mohs, T. Otto, K. M. Schneider, M. Peltzer, M. Boekschoten, C. H. Holland, C. A. Hudert, L. Kalveram, S. Wiegand, J. Saez-Rodriguez, T. Longerich, J. G. Hengstler, C. Trautwein

Date Published: 22nd Dec 2020

Publication Type: Journal

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH