Publications

What is a Publication?
16 Publications visible to you, out of a total of 16

Abstract (Expand)

BACKGROUND & AIMS: Recently, spatial-temporal/metabolic mathematical models have been established that allow the simulation of metabolic processes in tissues. We applied these models to decipherer ammonia detoxification mechanisms in the liver. METHODS: An integrated metabolic-spatial-temporal model was used to generate hypotheses of ammonia metabolism. Predicted mechanisms were validated using time-resolved analyses of nitrogen metabolism, activity analyses, immunostaining and gene expression after induction of liver damage in mice. Moreover, blood from the portal vein, liver vein and mixed venous blood was analyzed in a time dependent manner. RESULTS: Modeling revealed an underestimation of ammonia consumption after liver damage when only the currently established mechanisms of ammonia detoxification were simulated. By iterative cycles of modeling and experiments, the reductive amidation of alpha-ketoglutarate (α-KG) via glutamate dehydrogenase (GDH) was identified as the lacking component. GDH is released from damaged hepatocytes into the blood where it consumes ammonia to generate glutamate, thereby providing systemic protection against hyperammonemia. This mechanism was exploited therapeutically in a mouse model of hyperammonemia by injecting GDH together with optimized doses of cofactors. Intravenous injection of GDH (720 U/kg), α-KG (280 mg/kg) and NADPH (180 mg/kg) reduced the elevated blood ammonia concentrations (>200 μM) to levels close to normal within only 15 min. CONCLUSION: If successfully translated to patients the GDH-based therapy might provide a less aggressive therapeutic alternative for patients with severe hyperammonemia.

Authors: Ahmed Ghallab, Géraldine Cellière, Sebastian G. Henkel, Dominik Driesch, Stefan Hoehme, Ute Hofmann, Sebastian Zellmer, Patricio Godoy, Agapios Sachinidis, Meinolf Blaszkewicz, Raymond Reif, Rosemarie Marchan, Lars Kuepfer, Dieter Häussinger, Dirk Drasdo, Rolf Gebhardt, Jan G. Hengstler

Date Published: 1st Apr 2016

Publication Type: Not specified

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH