Projects: LiSyM network, LiSyM Pillar III: Regeneration and Repair in Acute-on-Chronic Liver Failure (LiSyM-ACLF), SMART-NAFLD, Forschungsnetzwerk LiSyM-Krebs, DEEP-HCC network, C-TIP-HCC network
Institutions: German Cancer Research Center (DKFZ), Division of Systems Biology of Signal Transduction, HITS gGmbH
Program management team LiSyM-Cancer (project and communications manager)
Former PhD student in LiSyM, at DKFZ Heidelberg in the group of Ursula Klingmüller
(née Schmitt)
Projects: LiSyM Pillar I: Early Metabolic Injury (LiSyM-EMI), LiSyM PALs, LiSyM network, LiSyM-Krebs Partnering, Forschungsnetzwerk LiSyM-Krebs, DEEP-HCC network
Institutions: Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH), Technische Universität Dresden
https://orcid.org/0000-0003-0137-5106ODE model describes dynamics of IFNalpha-induced signaling in Huh7.5 cells for a time scale up to 32 hours after stimulation with IFNalpha. The model consists of an IFN receptor model, formation/degradation and cytoplasmic/nuclear shuttling of STAT1-homodimers, STAT1-STAT2-heterodimers and STAT1-STAT2-IRF9 (ISGF3) complexes. On top, formation of feedback proteins STAT1, STAT2, IRF9, USP18, SOCS1, SOCS3 and IRF2 and corresponding influences on IFNalpha signaling dynamics was incorporated. The model ...
Creators: Jens Timmer, Ursula Klingmüller, Daniel Seehofer, Marcus Rosenblatt, Krishna Kumar Tiwari, Frédérique Kok
Submitter: Olga Krebs
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: Copasi
Organism: Not specified
Investigations: 1 hidden item
Studies: 1 hidden item
Assays: 1 hidden item
Abstract (Expand)
Authors: Emad Alamoudi, Yannik Schälte, Robert Müller, Jörn Starruß, Nils Bundgaard, Frederik Graw, Lutz Brusch, Jan Hasenauer
Date Published: 21st Feb 2023
Publication Type: Misc
DOI: 10.1101/2023.02.21.528946
Citation: biorxiv;2023.02.21.528946v2,[Preprint]
Abstract (Expand)
Authors: E. Alamoudi, Y. Schalte, R. Muller, J. Starruss, N. Bundgaard, F. Graw, L. Brusch, J. Hasenauer
Date Published: 1st Nov 2023
Publication Type: Journal
PubMed ID: 37947308
Citation: Bioinformatics. 2023 Nov 1;39(11):btad674. doi: 10.1093/bioinformatics/btad674.