4-O'-methylhonokiol protects from alcohol/carbon tetrachloride-induced liver injury in mice.

Abstract:

Alcoholic liver disease (ALD) is a leading cause of liver cirrhosis, liver cancer, and related mortality. The endocannabinoid system contributes to the development of chronic liver diseases, where cannabinoid receptor 2 (CB2) has been shown to have a protecting role. Thus, here, we investigated how CB2 agonism by 4'-O-methylhonokiol (MHK), a biphenyl from Magnolia grandiflora, affects chronic alcohol-induced liver fibrosis and damage in mice. A combination of alcohol (10% vol/vol) and CCl4 (1 ml/kg) was applied to C57BL/6 mice for 5 weeks. MHK (5 mg/kg) was administered daily, and liver damage assessed by serum AST and ALT levels, histology, gene, and protein expression. Endocannabinoids (ECs) and related lipid derivatives were measured by liquid chromatography and mass spectrometry (LC-MS) in liver tissues. In vitro, MHK was studied in TGFbeta1-activated hepatic stellate cells (HSC). MHK treatment alleviated hepatic fibrosis, paralleled by induced expression of matrix metalloproteinases (MMP)-2, -3, -9, and -13, and downregulation of CB1 mRNA. Necrotic lesions and hepatic inflammation were moderately improved, while IL-10 mRNA increased and IFNgamma, Mcl-1, JNK1, and RIPK1 normalized by MHK. Hepatic anandamide (AEA) and related N-acetylethanolamines (NAEs) were elevated in MHK group, whereas fatty acid synthase and diacylglycerol O-acyltransferase 2 expression reduced. In vitro, MHK prevented HSC activation and induced apoptosis via induction of bak1 and bcl-2. To conclude, MHK revealed hepatoprotective effects during alcohol-induced liver damage through the induction of MMPs, AEA, and NAEs and prevention of HSC activation, indicating MHK as a potent therapeutic for liver fibrosis and ALD. KEY MESSAGES: Methylhonokiol improves liver damage and survival. Methylhonokiol reduces hepatic fibrosis and necroinflammation. Methylhonokiol prevents myofibroblast activation and induces apoptosis. Methylhonokiol upregulates endocannabinoids and related N-acylethanolamines. Methylhonokiol contributes to lipid hydrolysis via PPARalpha/gamma.

SEEK ID: https://seek.lisym.org/publications/88

PubMed ID: 28689299

Projects: LiSyM Pillar I: Early Metabolic Injury (LiSyM-EMI)

Publication type: Not specified

Journal: J Mol Med (Berl)

Citation: J Mol Med (Berl). 2017 Oct;95(10):1077-1089. doi: 10.1007/s00109-017-1556-y. Epub 2017 Jul 8.

Date Published: 8th Jul 2017

Registered Mode: Not specified

Authors: E. Patsenker, A. Chicca, V. Petrucci, S. Moghadamrad, A. de Gottardi, J. Hampe, J. Gertsch, N. Semmo, F. Stickel

help Submitter
Activity

Views: 4069

Created: 12th Feb 2018 at 14:27

Last updated: 8th Mar 2024 at 07:44

help Tags

This item has not yet been tagged.

help Attributions

None

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH