Publications

What is a Publication?
78 Publications visible to you, out of a total of 78

Abstract (Expand)

Mouse models of non-alcoholic fatty liver disease (NAFLD) are required to define therapeutic targets, but detailed time-resolved studies to establish a sequence of events are lacking. Here, we fed malee, we fed male C57Bl/6N mice a Western or standard diet over 48 weeks. Multiscale time-resolved characterization was performed using RNA-seq, histopathology, immunohistochemistry, intravital imaging, and blood chemistry; the results were compared to human disease. Acetaminophen toxicity and ammonia metabolism were additionally analyzed as functional readouts. We identified a sequence of eight key events: formation of lipid droplets; inflammatory foci; lipogranulomas; zonal reorganization; cell death and replacement proliferation; ductular reaction; fibrogenesis; and hepatocellular cancer. Functional changes included resistance to acetaminophen and altered nitrogen metabolism. The transcriptomic landscape was characterized by two large clusters of monotonously increasing or decreasing genes, and a smaller number of ‘rest-and-jump genes’ that initially remained unaltered but became differentially expressed only at week 12 or later. Approximately 30% of the genes altered in human NAFLD are also altered in the present mouse model and an increasing overlap with genes altered in human HCC occurred at weeks 30–48. In conclusion, the observed sequence of events recapitulates many features of human disease and offers a basis for the identification of therapeutic targets.

Authors: Ahmed Ghallab, Maiju Myllys, Adrian Friebel, Julia Duda, Karolina Edlund, Emina Halilbasic, Mihael Vucur, Zaynab Hobloss, Lisa Brackhagen, Brigitte Begher-Tibbe, Reham Hassan, Michael Burke, Erhan Genc, Lynn Johann Frohwein, Ute Hofmann, Christian H. Holland, Daniela González, Magdalena Keller, Abdel-latif Seddek, Tahany Abbas, Elsayed S. I. Mohammed, Andreas Teufel, Timo Itzel, Sarah Metzler, Rosemarie Marchan, Cristina Cadenas, Carsten Watzl, Michael A. Nitsche, Franziska Kappenberg, Tom Luedde, Thomas Longerich, Jörg Rahnenführer, Stefan Hoehme, Michael Trauner, Jan G. Hengstler

Date Published: 1st Oct 2021

Publication Type: Journal

Abstract (Expand)

Non-alcoholic fatty liver disease (NAFLD) is a common metabolic dysfunction leading to hepatic steatosis. However, NAFLD's global impact on the liver lipidome is poorly understood. Using high-resolution shotgun mass spectrometry, we quantified the molar abundance of 316 species from 22 major lipid classes in liver biopsies of 365 patients, including non-steatotic patients with normal or excessive weight, patients diagnosed with NAFL (non-alcoholic fatty liver) or NASH (non-alcoholic steatohepatitis), and patients bearing common mutations of NAFLD-related protein factors. We confirmed the progressive accumulation of di- and tri- acylglycerols and cholesteryl esters in the liver of NAFL and NASH patients, while the bulk composition of glycerophospho- and sphingolipids remained unchanged. Further stratification by biclustering analysis identified sphingomyelin species comprising n24:2 fatty acid moieties as membrane lipid markers of NAFLD. Normalized relative abundance of sphingomyelins SM 43:3;2 and SM 43:1;2 containing n24:2 and n24:0 fatty acid moieties, respectively, showed opposite trends during NAFLD progression and distinguished NAFL and NASH lipidomes from the lipidome of non-steatoic livers. Together with several glycerophospholipids containing a C22:6 fatty acid moiety, these lipids serve as markers of early and advanced stages of NAFL.

Authors: Olga Vvedenskaya, Tim Daniel Rose, Oskar Knittelfelder, Alessandra Palladini, Judith Andrea Heidrun Wodke, Kai Schumann, Jacobo Miranda Ackerman, Yuting Wang, Canan Has, Mario Brosch, Veera Raghavan Thangapandi, Stephan Buch, Thomas Züllig, Jürgen Hartler, Harald C. Köfeler, Christoph Röcken, Ünal Coskun, Edda Klipp, Witigo von Schoenfels, Justus Gross, Clemens Schafmayer, Jochen Hampe, Josch Konstantin Pauling, Andrej Shevchenko

Date Published: 1st Aug 2021

Publication Type: Journal

Abstract (Expand)

In this work, we introduce an entirely data-driven and automated approach to reveal disease-associated biomarker and risk factor networks from heterogeneous and high-dimensional healthcare data. Our workflow is based on Bayesian networks, which are a popular tool for analyzing the interplay of biomarkers. Usually, data require extensive manual preprocessing and dimension reduction to allow for effective learning of Bayesian networks. For heterogeneous data, this preprocessing is hard to automatize and typically requires domain-specific prior knowledge. We here combine Bayesian network learning with hierarchical variable clustering in order to detect groups of similar features and learn interactions between them entirely automated. We present an optimization algorithm for the adaptive refinement of such group Bayesian networks to account for a specific target variable, like a disease. The combination of Bayesian networks, clustering, and refinement yields low-dimensional but disease-specific interaction networks. These networks provide easily interpretable, yet accurate models of biomarker interdependencies. We test our method extensively on simulated data, as well as on data from the Study of Health in Pomerania (SHIP-TREND), and demonstrate its effectiveness using non-alcoholic fatty liver disease and hypertension as examples. We show that the group network models outperform available biomarker scores, while at the same time, they provide an easily interpretable interaction network.

Authors: A. K. Becker, M. Dorr, S. B. Felix, F. Frost, H. J. Grabe, M. M. Lerch, M. Nauck, U. Volker, H. Volzke, L. Kaderali

Date Published: 13th Feb 2021

Publication Type: Journal

Abstract (Expand)

Lumen morphogenesis is key to the function of organs and results from the integration of molecular pathways and mechanical forces1–3. The mechanisms governing anisotropic lumen expansion remain elusive4–6. In contrast to epithelial cells which have simple apico-basal polarity and form tubes, hepatocytes are multi-polar and form narrow lumina that grow anisotropically between adjacent cells, collectively generating a complex 3D network of bile canaliculi (BC)7,8. Here, we studied lumen elongation and BC morphogenesis in differentiating primary mouse hepatoblasts in vitro. Remarkably, we discovered a pattern of specific extensions of the apical membrane traversing the lumen between adjacent hepatocytes and sealed by tight junctions, reminiscent of the bulkheads of boats. These structures were also present in the developing liver. A targeted screen revealed that silencing of Rab35 caused loss of the bulkheads, conversion of hepatocyte into simple epithelial polarity and formation of spherical lumina in vitro. Strikingly, we could re-engineer hepatocyte polarity and tissue morphogenesis in vivo in the embryonic liver, converting BC into simple epithelial tubes. Our results suggest that the apical bulkheads of hepatocytes are cell-intrinsic anisotropic mechanical elements that ensure stability of the elongating lumen between two cells, thus determining the structure of BC during liver tissue morphogenesis.

Authors: Lenka Belicova, Urska Repnik, Julien Delpierre, Elzbieta Gralinska, Sarah Seifert, José Ignacio Valenzuela, Hernán Andrés Morales-Navarrete, Christian Franke, Helin Räägel, Evgeniya Shcherbinina, Tatiana Prikazchikova, Victor Koteliansky, Martin Vingron, Yannis Kalaidzidis, Timofei Zatsepin, Marino Zerial

Date Published: 2021

Publication Type: Unpublished

Abstract (Expand)

How epithelial cells coordinate their polarity to form functional tissues is an open question in cell biology. Here, we characterize a unique type of polarity found in liver tissue, nematic cell polarity, which is different from vectorial cell polarity in simple, sheet-like epithelia. We propose a conceptual and algorithmic framework to characterize complex patterns of polarity proteins on the surface of a cell in terms of a multipole expansion. To rigorously quantify previously observed tissue-level patterns of nematic cell polarity (Morales-Navarrete et al., eLife 2019), we introduce the concept of co-orientational order parameters, which generalize the known biaxial order parameters of the theory of liquid crystals. Applying these concepts to three-dimensional reconstructions of single cells from high-resolution imaging data of mouse liver tissue, we show that the axes of nematic cell polarity of hepatocytes exhibit local coordination and are aligned with the biaxially anisotropic sinusoidal network for blood transport. Our study characterizes liver tissue as a biological example of a biaxial liquid crystal. The general methodology developed here could be applied to other tissues and in-vitro organoids.

Authors: A. Scholich, S. Syga, H. Morales-Navarrete, F. Segovia-Miranda, H. Nonaka, K. Meyer, W. de Back, L. Brusch, Y. Kalaidzidis, M. Zerial, F. Julicher, B. M. Friedrich

Date Published: 11th Dec 2020

Publication Type: Journal

Abstract (Expand)

Liver diseases are important causes of morbidity and mortality worldwide. The aim of this study was to identify differentially expressed microRNAs (miRNAs), target genes, and key pathways as innovative diagnostic biomarkers in liver patients with different pathology and functional state. We determined, using RT-qPCR, the expression of 472 miRNAs in 125 explanted livers from subjects with six different liver pathologies and from control livers. ANOVA was employed to obtain differentially expressed miRNAs (DEMs), and miRDB (MicroRNA target prediction database) was used to predict target genes. A miRNA-gene differential regulatory (MGDR) network was constructed for each condition. Key miRNAs were detected using topological analysis. Enrichment analysis for DEMs was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). We identified important DEMs common and specific to the different patient groups and disease progression stages. hsa-miR-1275 was universally downregulated regardless the disease etiology and stage, while hsa-let-7a*, hsa-miR-195, hsa-miR-374, and hsa-miR-378 were deregulated. The most significantly enriched pathways of target genes controlled by these miRNAs comprise p53 tumor suppressor protein (TP53)-regulated metabolic genes, and those involved in regulation of methyl-CpG-binding protein 2 (MECP2) expression, phosphatase and tensin homolog (PTEN) messenger RNA (mRNA) translation and copper homeostasis. Our findings show a novel panel of deregulated miRNAs in the liver tissue from patients with different liver pathologies. These miRNAs hold potential as biomarkers for diagnosis and staging of liver diseases.

Authors: M. Gholizadeh, S. Szelag-Pieniek, M. Post, M. Kurzawski, J. Prieto, J. Argemi, M. Drozdzik, L. Kaderali

Date Published: 6th Oct 2020

Publication Type: Journal

Abstract (Expand)

BACKGROUND & AIMS: A common genetic variant near MBOAT7 (rs641738C>T) has been previously associated with hepatic fat and advanced histology in non-alcoholic fatty liver disease (NAFLD), however, these findings have not been consistently replicated in the literature. We aimed to establish whether rs641738C>T is a risk factor across the spectrum of NAFLD and characterize its role in the regulation of related metabolic phenotypes through meta-analysis. METHODS: We performed meta-analysis of studies with data on the association between rs641738C>T genotype and: liver fat, NAFLD histology, and serum ALT, lipids, or insulin. These included directly genotyped studies and population-level data from genome-wide association studies (GWAS). We performed random effects meta-analysis using recessive, additive, and dominant genetic models. RESULTS: Data from 1,066,175 participants (9,688 with liver biopsies) across 42 studies were included in the meta-analysis. rs641738C>T was associated with higher liver fat on CT/MRI (+0.03 standard deviations [95% CI: 0.02 - 0.05], pz=4.8x10(-5)) and diagnosis of NAFLD (OR 1.17 [95% CI 1.05 - 1.3], pz=0.003) in Caucasian adults. The variant was also positively associated with presence of advanced fibrosis (OR 1.22 [95% CI: 1.03 - 1.45], pz=0.021) in Caucasian adults using a recessive model of inheritance (CC+CT vs. TT). Meta-analysis of data from previous GWAS found the variant to be associated with higher ALT (pz=0.002) and lower serum triglycerides (pz=1.5x10(-4)). rs641738C>T was not associated with fasting insulin and no effect was observed in children with NAFLD. CONCLUSION: Our study validates rs641738C>T near MBOAT7 as a risk factor for the presence and severity of NAFLD in individuals of European descent.

Authors: K. Teo, K. W. M. Abeysekera, L. Adams, E. Aigner, Q. M. Anstee, J. M. Banales, R. Banerjee, P. Basu, T. Berg, P. Bhatnagar, S. Buch, A. Canbay, S. Caprio, A. Chatterjee, Y. D. Ida Chen, A. Chowdhury, A. K. Daly, C. Datz, D. de Gracia Hahn, J. K. DiStefano, J. Dong, A. Duret, C. Emdin, M. Fairey, G. S. Gerhard, X. Guo, J. Hampe, M. Hickman, L. Heintz, C. Hudert, H. Hunter, M. Kelly, J. Kozlitina, M. Krawczyk, F. Lammert, C. Langenberg, J. Lavine, L. Li, H. K. Lim, R. Loomba, P. K. Luukkonen, P. E. Melton, T. A. Mori, N. D. Palmer, C. A. Parisinos, S. G. Pillai, F. Qayyum, M. C. Reichert, S. Romeo, J. I. Rotter, Y. R. Im, N. Santoro, C. Schafmayer, E. K. Speliotes, S. Stender, F. Stickel, C. D. Still, P. Strnad, K. D. Taylor, A. Tybjaerg-Hansen, G. R. Umano, M. Utukuri, L. Valenti, L. E. Wagenknecht, N. J. Wareham, R. M. Watanabe, J. Wattacheril, H. Yaghootkar, H. Yki-Jarvinen, K. A. Young, J. P. Mann

Date Published: 31st Aug 2020

Publication Type: Journal

Abstract (Expand)

Physiological liver cell replacement is central to maintaining the organ’s high metabolic activity, although its characteristics are difficult to study in humans. Using retrospective 14C birth dating of cells, we report that human hepatocytes show continuous and lifelong turnover, maintaining the liver a young organ (average age < 3 years). Hepatocyte renewal is highly dependent on the ploidy level. Diploid hepatocytes show an seven-fold higher annual exchange rate than polyploid hepatocytes. These observations support the view that physiological liver cell renewal in humans is mainly dependent on diploid hepatocytes, whereas polyploid cells are compromised in their ability to divide. Moreover, cellular transitions between these two subpopulations are limited, with minimal contribution to the respective other ploidy class under homeostatic conditions. With these findings, we present a new integrated model of homeostatic liver cell generation in humans that provides fundamental insights into liver cell turnover dynamics.

Authors: Paula Heinke, Fabian Rost, Julian Rode, Thilo Welsch, Kanar Alkass, Joshua Feddema, Mehran Salehpour, Göran Possnert, Henrik Druid, Lutz Brusch, Olaf Bergmann

Date Published: 7th Aug 2020

Publication Type: Unpublished

Abstract (Expand)

Can three-dimensional, microvasculature networks still ensure blood supply if individual links fail? We address this question in the sinusoidal network, a plexus-like microvasculature network, which transports nutrient-rich blood to every hepatocyte in liver tissue, by building on recent advances in high-resolution imaging and digital reconstruction of adult mice liver tissue. We find that the topology of the three-dimensional sinusoidal network reflects its two design requirements of a space-filling network that connects all hepatocytes, while using shortest transport routes: sinusoidal networks are sub-graphs of the Delaunay graph of their set of branching points, and also contain the corresponding minimum spanning tree, both to good approximation. To overcome the spatial limitations of experimental samples and generate arbitrarily-sized networks, we developed a network generation algorithm that reproduces the statistical features of 0.3-mm-sized samples of sinusoidal networks, using multi-objective optimization for node degree and edge length distribution. Nematic order in these simulated networks implies anisotropic transport properties, characterized by an empirical linear relation between a nematic order parameter and the anisotropy of the permeability tensor. Under the assumption that all sinusoid tubes have a constant and equal flow resistance, we predict that the distribution of currents in the network is very inhomogeneous, with a small number of edges carrying a substantial part of the flow-a feature known for hierarchical networks, but unexpected for plexus-like networks. We quantify network resilience in terms of a permeability-at-risk, i.e., permeability as function of the fraction of removed edges. We find that sinusoidal networks are resilient to random removal of edges, but vulnerable to the removal of high-current edges. Our findings suggest the existence of a mechanism counteracting flow inhomogeneity to balance metabolic load on the liver.

Authors: J. Karschau, A. Scholich, J. Wise, H. Morales-Navarrete, Y. Kalaidzidis, M. Zerial, B. M. Friedrich

Date Published: 1st Jul 2020

Publication Type: Journal

Abstract (Expand)

OBJECTIVE: The rs641738C>T variant located near the membrane-bound O-acyltransferase domain containing 7 (MBOAT7) locus is associated with fibrosis in liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcohol-related liver disease, hepatitis B and C. We aim to understand the mechanism by which the rs641738C>T variant contributes to pathogenesis of NAFLD. DESIGN: Mice with hepatocyte-specific deletion of MBOAT7 (Mboat7(Deltahep)) were generated and livers were characterised by histology, flow cytometry, qPCR, RNA sequencing and lipidomics. We analysed the association of rs641738C>T genotype with liver inflammation and fibrosis in 846 NAFLD patients and obtained genotype-specific liver lipidomes from 280 human biopsies. RESULTS: Allelic imbalance analysis of heterozygous human liver samples pointed to lower expression of the MBOAT7 transcript on the rs641738C>T haplotype. Mboat7(Deltahep) mice showed spontaneous steatosis characterised by increased hepatic cholesterol ester content after 10 weeks. After 6 weeks on a high fat, methionine-low, choline-deficient diet, mice developed increased hepatic fibrosis as measured by picrosirius staining (p<0.05), hydroxyproline content (p<0.05) and transcriptomics, while the inflammatory cell populations and inflammatory mediators were minimally affected. In a human biopsied NAFLD cohort, MBOAT7 rs641738C>T was associated with fibrosis (p=0.004) independent of the presence of histological inflammation. Liver lipidomes of Mboat7(Deltahep) mice and human rs641738TT carriers with fibrosis showed increased total lysophosphatidylinositol levels. The altered lysophosphatidylinositol and phosphatidylinositol subspecies in MBOAT7(Deltahep) livers and human rs641738TT carriers were similar. CONCLUSION: Mboat7 deficiency in mice and human points to an inflammation-independent pathway of liver fibrosis that may be mediated by lipid signalling and a potentially targetable treatment option in NAFLD.

Authors: V. R. Thangapandi, O. Knittelfelder, M. Brosch, E. Patsenker, O. Vvedenskaya, S. Buch, S. Hinz, A. Hendricks, M. Nati, A. Herrmann, D. R. Rekhade, T. Berg, M. Matz-Soja, K. Huse, E. Klipp, J. K. Pauling, J. A. Wodke, J. Miranda Ackerman, M. V. Bonin, E. Aigner, C. Datz, W. von Schonfels, S. Nehring, S. Zeissig, C. Rocken, A. Dahl, T. Chavakis, F. Stickel, A. Shevchenko, C. Schafmayer, J. Hampe, P. Subramanian

Date Published: 26th Jun 2020

Publication Type: Journal

Abstract (Expand)

BACKGROUND AND AIMS: Little is known about genetic factors that affect development of alcohol-related cirrhosis. We performed a genome-wide association study (GWAS) of samples from the United Kingdom Biobank (UKB) to identify polymorphisms associated with risk of alcohol-related liver disease. METHODS: We performed a GWAS of 35,839 participants in the UKB with high intake of alcohol against markers of hepatic fibrosis (FIB-4, APRI, and Forns index scores) and hepatocellular injury (levels of aminotransferases). Loci identified in the discovery analysis were tested for their association with alcohol-related cirrhosis in 3 separate European cohorts (phase 1 validation cohort; n=2545). Variants associated with alcohol-related cirrhosis in the validation at a false discovery rate of less than 20% were then directly genotyped in 2 additional European validation cohorts (phase 2 validation, n=2068). RESULTS: In the GWAS of the discovery cohort, we identified 50 independent risk loci with genome-wide significance (P < 5 x 10(-8)). Nine of these loci were significantly associated with alcohol-related cirrhosis in the phase 1 validation cohort; 6 of these 9 loci were significantly associated with alcohol-related cirrhosis in phase 2 validation cohort, at a false discovery rate below 5%. The loci included variants in the mitochondrial amidoxime reducing component 1 gene (MARC1) and the heterogeneous nuclear ribonucleoprotein U like 1 gene (HNRNPUL1). After we adjusted for age, sex, body mass index, and type-2 diabetes in the phase 2 validation cohort, the minor A allele of MARC1:rs2642438 was associated with reduced risk of alcohol-related cirrhosis (adjusted odds ratio, 0.76; P=.0027); conversely, the minor C allele of HNRNPUL1:rs15052 was associated with an increased risk of alcohol-related cirrhosis (adjusted odds ratio, 1.30; P=.020). CONCLUSIONS: In a GWAS of samples from the UKB, we identified and validated (in 5 European cohorts) single-nucleotide polymorphisms that affect risk of alcohol-related cirrhosis in opposite directions: the minor A allele in MARC1:rs2642438 decreases risk, whereas the minor C allele in HNRNPUL1:rs15052 increases risk.

Authors: H. Innes, S. Buch, S. Hutchinson, I. N. Guha, J. R. Morling, E. Barnes, W. Irving, E. Forrest, V. Pedergnan, D. Goldberg, E. Aspinall, S. Barclay, P. Hayes, J. Dillon, H. D. Nischalke, P. Lutz, U. Spengler, J. Fischer, T. Berg, M. Brosch, F. Eyer, C. Datz, S. Mueller, T. Peccerella, P. Deltenre, A. Marot, M. Soyka, A. McQuillin, M. Y. Morgan, J. Hampe, F. Stickel

Date Published: 16th Jun 2020

Publication Type: Journal

Abstract

Not specified

Authors: Stefan Hoehme, Rolf Gebhardt, JG Hengstler, D. Drasdo

Date Published: 18th May 2020

Publication Type: Misc

Abstract

Not specified

Authors: Adrian Friebel, Tim Johann, Dirk Drasdo, Stefan Hoehme

Date Published: 18th May 2020

Publication Type: Misc

Abstract

Not specified

Authors: Bjoern Goldenbogen, Stephan O. Adler, Oliver Bodeit, Judith AH Wodke, Aviv Korman, Lasse Bonn, Ximena Martinez de la Escalera, Johanna E L Haffner, Maria Krantz, Maxim Karnetzki, Ivo Maintz, Lisa Mallis, Rafael U Moran Torres, Hannah Prawitz, Patrick Segelitz, Martin Seeger, Rune Linding, Edda Klipp

Date Published: 6th May 2020

Publication Type: Unpublished

Abstract (Expand)

BACKGROUND: The extracellular signal-regulated kinase (ERK) pathway regulates cell growth, and is hyper-activated and associated with drug resistance in hepatocellular carcinoma (HCC). Metabolic pathways are profoundly dysregulated in HCC. Whether an altered metabolic state is linked to activated ERK pathway and drug response in HCC is unaddressed. METHODS: We deprived HCC cells of glutamine to induce metabolic alterations and performed various assays, including metabolomics (with (13)C-glucose isotope tracing), microarray analysis, and cell proliferation assays. Glutamine-deprived cells were also treated with kinase inhibitors (e.g. Sorafenib, Erlotinib, U0126 amongst other MEK inhibitors). We performed bioinformatics analysis and stratification of HCC tumour microarrays to determine upregulated ERK gene signatures in patients. FINDINGS: In a subset of HCC cells, the withdrawal of glutamine triggers a severe metabolic alteration and ERK phosphorylation (pERK). This is accompanied by resistance to the anti-proliferative effect of kinase inhibitors, despite pERK inhibition. High intracellular serine is a consistent feature of an altered metabolic state and contributes to pERK induction and the kinase inhibitor resistance. Blocking the ERK pathway facilitates cell proliferation by reprogramming metabolism, notably enhancing aerobic glycolysis. We have identified 24 highly expressed ERK gene signatures that their combined expression strongly indicates a dysregulated metabolic gene network in human HCC tissues. INTERPRETATION: A severely compromised metabolism lead to ERK pathway induction, and primes some HCC cells to pro-survival phenotypes upon ERK pathway blockade. Our findings offer novel insights for understanding, predicting and overcoming drug resistance in liver cancer patients. FUND: DFG, BMBF and Sino-German Cooperation Project.

Authors: Z. C. Nwosu, W. Pioronska, N. Battello, A. D. Zimmer, B. Dewidar, M. Han, S. Pereira, B. Blagojevic, D. Castven, V. Charlestin, P. Holenya, J. Lochead, C. De La Torre, N. Gretz, P. Sajjakulnukit, L. Zhang, M. H. Ward, J. U. Marquardt, M. P. di Magliano, C. A. Lyssiotis, J. Sleeman, S. Wolfl, M. P. Ebert, C. Meyer, U. Hofmann, S. Dooley

Date Published: 25th Apr 2020

Publication Type: Not specified

Abstract (Expand)

How epithelial cells coordinate their polarity to form functional tissues is an open question in cell biology. Here, we characterize a unique type of polarity found in liver tissue, nematic cell polarity, which is different from vectorial cell polarity in simple, sheet-like epithelia. We propose a conceptual and algorithmic framework to characterize complex patterns of polarity proteins on the surface of a cell in terms of a multipole expansion. To rigorously quantify previously observed tissue-level patterns of nematic cell polarity (Morales-Navarette et al., eLife 8:e44860, 2019), we introduce the concept of co-orientational order parameters, which generalize the known biaxial order parameters of the theory of liquid crystals. Applying these concepts to three-dimensional reconstructions of single cells from high-resolution imaging data of mouse liver tissue, we show that the axes of nematic cell polarity of hepatocytes exhibit local coordination and are aligned with the biaxially anisotropic sinusoidal network for blood transport. Our study characterizes liver tissue as a biological example of a biaxial liquid crystal. The general methodology developed here could be applied to other tissues or in-vitro organoids.

Authors: Andre Scholich, Simon Syga, Hernan Morales-Navarrete, Fabian Segovia Miranda, Hidenori Nonaka, Kirstin Meyer, Walter de Back, Lutz Brusch, Yannis Kalaidzidis, Marino Zerial, Frank Julicher, Benjamin M. Friedrich

Date Published: 22nd Apr 2020

Publication Type: Not specified

Abstract (Expand)

The mechanisms of organ size control remain poorly understood. A key question is how cells collectively sense the overall status of a tissue. We addressed this problem focusing on mouse liver regeneration. Using digital tissue reconstruction and quantitative image analysis, we found that the apical surface of hepatocytes forming the bile canalicular network expands concomitant with an increase in F-actin and phospho-myosin, to compensate an overload of bile acids. These changes are sensed by the Hippo transcriptional co-activator YAP, which localizes to apical F-actin-rich regions and translocates to the nucleus in dependence of the integrity of the actin cytoskeleton. This mechanism tolerates moderate bile acid fluctuations under tissue homeostasis, but activates YAP in response to sustained bile acid overload. Using an integrated biophysical-biochemical model of bile pressure and Hippo signaling, we explained this behavior by the existence of a mechano-sensory mechanism that activates YAP in a switch-like manner. We propose that the apical surface of hepatocytes acts as a self-regulatory mechano-sensory system that responds to critical levels of bile acids as readout of tissue status.

Authors: K. Meyer, H. Morales-Navarrete, S. Seifert, M. Wilsch-Braeuninger, U. Dahmen, E. M. Tanaka, L. Brusch, Y. Kalaidzidis, M. Zerial

Date Published: 25th Feb 2020

Publication Type: Journal

Abstract (Expand)

The mechanisms of organ size control remain poorly understood. A key question is how cells collectively sense the overall status of a tissue. We addressed this problem focusing on mouse liver regeneration. Using digital tissue reconstruction and quantitative image analysis, we found that the apical surface of hepatocytes forming the bile canalicular network expands concomitant with an increase in F‐actin and phospho‐myosin, to compensate an overload of bile acids. These changes are sensed by the Hippo transcriptional co‐activator YAP, which localizes to apical F‐actin‐rich regions and translocates to the nucleus in dependence of the integrity of the actin cytoskeleton. This mechanism tolerates moderate bile acid fluctuations under tissue homeostasis, but activates YAP in response to sustained bile acid overload. Using an integrated biophysical–biochemical model of bile pressure and Hippo signaling, we explained this behavior by the existence of a mechano‐sensory mechanism that activates YAP in a switch‐like manner. We propose that the apical surface of hepatocytes acts as a self‐regulatory mechano‐sensory system that responds to critical levels of bile acids as readout of tissue status.

Authors: Kirstin Meyer, Hernan Morales‐Navarrete, Sarah Seifert, Michaela Wilsch‐Braeuninger, Uta Dahmen, Elly M Tanaka, Lutz Brusch, Yannis Kalaidzidis, Marino Zerial

Date Published: 24th Feb 2020

Publication Type: Not specified

Abstract

Not specified

Authors: Paul Van Liedekerke, Johannes Neitsch, Tim Johann, Enrico Warmt, Ismael Gonzàlez-Valverde, Stefan Hoehme, Steffen Grosser, Josef Kaes, Dirk Drasdo

Date Published: 1st Feb 2020

Publication Type: Journal

Abstract (Expand)

Research software has become a central asset in academic research. It optimizes existing and enables new research methods, implements and embeds research knowledge, and constitutes an essential research product in itself. Research software must be sustainable in order to understand, replicate, reproduce, and build upon existing research or conduct new research effectively. In other words, software must be available, discoverable, usable, and adaptable to new needs, both now and in the future. Research software therefore requires an environment that supports sustainability. Hence, a change is needed in the way research software development and maintenance are currently motivated, incentivized, funded, structurally and infrastructurally supported, and legally treated. Failing to do so will threaten the quality and validity of research. In this paper, we identify challenges for research software sustainability in Germany and beyond, in terms of motivation, selection, research software engineering personnel, funding, infrastructure, and legal aspects. Besides researchers, we specifically address political and academic decision-makers to increase awareness of the importance and needs of sustainable research software practices. In particular, we recommend strategies and measures to create an environment for sustainable research software, with the ultimate goal to ensure that software-driven research is valid, reproducible and sustainable, and that software is recognized as a first class citizen in research.

Authors: Hartwig Anzt, Felix Bach, Stephan Druskat, Frank Löffler, Axel Loewe, Bernhard Y. Renard, Gunnar Seemann, Alexander Struck, Elke Achhammer, Piush Aggarwal, Franziska Appel, Michael Bader, Lutz Brusch, Christian Busse, Gerasimos Chourdakis, Piotr Wojciech Dabrowski, Peter Ebert, Bernd Flemisch, Sven Friedl, Bernadette Fritzsch, Maximilian D. Funk, Volker Gast, Florian Goth, Jean-Noël Grad, Sibylle Hermann, Florian Hohmann, Stephan Janosch, Dominik Kutra, Jan Linxweiler, Thilo Muth, Wolfgang Peters-Kottig, Fabian Rack, Fabian H.C. Raters, Stephan Rave, Guido Reina, Malte Reißig, Timo Ropinski, Joerg Schaarschmidt, Heidi Seibold, Jan P. Thiele, Benjamin Uekermann, Stefan Unger, Rudolf Weeber

Date Published: 2020

Publication Type: Not specified

Abstract (Expand)

Early disease diagnosis is key to the effective treatment of diseases. Histopathological analysis of human biopsies is the gold standard to diagnose tissue alterations. However, this approach has low resolution and overlooks 3D (three-dimensional) structural changes resulting from functional alterations. Here, we applied multiphoton imaging, 3D digital reconstructions and computational simulations to generate spatially resolved geometrical and functional models of human liver tissue at different stages of non-alcoholic fatty liver disease (NAFLD). We identified a set of morphometric cellular and tissue parameters correlated with disease progression, and discover profound topological defects in the 3D bile canalicular (BC) network. Personalized biliary fluid dynamic simulations predicted an increased pericentral biliary pressure and micro-cholestasis, consistent with elevated cholestatic biomarkers in patients' sera. Our spatially resolved models of human liver tissue can contribute to high-definition medicine by identifying quantitative multiparametric cellular and tissue signatures to define disease progression and provide new insights into NAFLD pathophysiology.

Authors: F. Segovia-Miranda, H. Morales-Navarrete, M. Kucken, V. Moser, S. Seifert, U. Repnik, F. Rost, M. Brosch, A. Hendricks, S. Hinz, C. Rocken, D. Lutjohann, Y. Kalaidzidis, C. Schafmayer, L. Brusch, J. Hampe, M. Zerial

Date Published: 2nd Dec 2019

Publication Type: Not specified

Abstract (Expand)

The secretion of osmolytes into a lumen and thereby caused osmotic water inflow can drive fluid flows in organs without a mechanical pump. Such fluids include saliva, sweat, pancreatic juice and bile. The effects of elevated fluid pressure and the associated mechanical limitations of organ function remain largely unknown since fluid pressure is difficult to measure inside tiny secretory channels in vivo. We consider the pressure profile of the coupled osmolyte-flow problem in a secretory channel with a closed tip and an open outlet. Importantly, the entire lateral boundary acts as a dynamic fluid source, the strength of which self-organizes through feedback from the emergent pressure solution itself. We derive analytical solutions and compare them to numerical simulations of the problem in three-dimensional space. The theoretical results reveal a phase boundary in a four-dimensional parameter space separating the commonly considered regime with steady flow all along the channel, here termed “wet-tip” regime, from a “dry-tip” regime suffering ceased flow downstream from the closed tip. We propose a relation between the predicted phase boundary and the onset of cholestasis, a pathological liver condition with reduced bile outflow. The phase boundary also sets an intrinsic length scale for the channel which could act as a length sensor during organ growth.

Authors: Oleksandr Ostrenko, Jochen Hampe, Lutz Brusch

Date Published: 1st Dec 2019

Publication Type: Not specified

Abstract (Expand)

The Hedgehog (Hh) and Wnt/β-Catenin (Wnt) cascades are morphogen pathways whose pronounced influence on adult liver metabolism has been identified in recent years. How both pathways communicate and control liver metabolic functions are largely unknown. Detecting core components of Wnt and Hh signaling and mathematical modeling showed that both pathways in healthy liver act largely complementary to each other in the pericentral (Wnt) and the periportal zone (Hh) and communicate mainly by mutual repression. The Wnt/Hh module inversely controls the spatiotemporal operation of various liver metabolic pathways, as revealed by transcriptome, proteome, and metabolome analyses. Shifting the balance to Wnt (activation) or Hh (inhibition) causes pericentralization and periportalization of liver functions, respectively. Thus, homeostasis of the Wnt/Hh module is essential for maintaining proper liver metabolism and to avoid the development of certain metabolic diseases. With caution due to minor species-specific differences, these conclusions may hold for human liver as well.

Authors: Erik Kolbe, Susanne Aleithe, Christiane Rennert, Luise Spormann, Fritzi Ott, David Meierhofer, Robert Gajowski, Claus Stöpel, Stefan Hoehme, Michael Kücken, Lutz Brusch, Michael Seifert, Witigo von Schoenfels, Clemens Schafmayer, Mario Brosch, Ute Hofmann, Georg Damm, Daniel Seehofer, Jochen Hampe, Rolf Gebhardt, Madlen Matz-Soja

Date Published: 1st Dec 2019

Publication Type: Not specified

Abstract (Expand)

The I148M variant of the Patatin-like phospholipase domain-containing 3 (PNPLA3) protein is associated with an increased risk for liver inflammation and hepatocellular carcinoma (HCC), but the underlying mechanism is unknown. We hypothesized that enhanced CXC chemokine secretion mediates hepatic inflammation that accelerates development of HCC. Expandable primary human (upcyte(R)) hepatocytes and human PLC/PRF/5 hepatoma cells were lentivirally transduced with both PNPLA3 I148M variants and stimulated with lipids. Cytokine levels in culture supernatant and patient sera (n = 80) were analyzed by ELISA. Supernatants were assessed in transmigration experiments, tube formation, and proliferation assays. In vitro, lipid stimulation of transduced hepatocytes dose-dependently induced the production of interleukin-8 and CXCL1 in hepatocytes carrying the PNPLA3 148M variant. In line, sera from PNPLA3 148M-positive patients with alcoholic liver cirrhosis contained higher levels of interleukin-8 and CXCL1 than patients with wild-type PNPLA3. Supernatants from lipid-stimulated hepatocytes with the PNPLA3 148M variant induced enhanced migration of white blood cells, angiogenesis, and cell proliferation in comparison with supernatants from wild-type hepatocytes via CXC receptors 1 and 2. Increased production of interleukin-8 and CXCL1 by hepatocytes carrying the PNPLA3 148M variant contributes to a pro-inflammatory and tumorigenic milieu in patients with alcoholic liver disease. KEY MESSAGES: The PNPLA3 148M variant is associated with cirrhosis and hepatocellular carcinoma. Lipid stimulation of hepatocytes with this variant induces IL-8 and CXCL1. Supernatants from hepatocytes with this variant promote migration and angiogenesis. Sera from patients with this variant contained enhanced levels of IL-8 and CXCL1. The PNPLA3 148M variant contributes to a tumorigenic milieu via IL-8 and CXCL1.

Authors: H. D. Nischalke, P. Lutz, E. Bartok, B. Kramer, B. Langhans, R. Frizler, T. Berg, J. Hampe, S. Buch, C. Datz, F. Stickel, G. Hartmann, C. P. Strassburg, J. Nattermann, U. Spengler

Date Published: 23rd Oct 2019

Publication Type: Journal

Abstract (Expand)

BACKGROUND AND AIMS: Carriage of rs738409:G in patatin-like phospholipase domain containing 3 (PNPLA3) is associated with an increased risk for developing alcohol-related cirrhosis and hepatocellular carcinoma (HCC). Recently, rs72613567:TA in hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) was shown to be associated with a reduced risk for developing alcohol-related liver disease and to attenuate the risk associated with carriage of PNPLA3 rs738409:G. This study explores the risk associations between these two genetic variants and the development of alcohol-related cirrhosis and HCC. APPROACH AND RESULTS: Variants in HSD17B13 and PNPLA3 were genotyped in 6,171 participants, including 1,031 with alcohol-related cirrhosis and HCC, 1,653 with alcohol-related cirrhosis without HCC, 2,588 alcohol misusers with no liver disease, and 899 healthy controls. Genetic associations with the risks for developing alcohol-related cirrhosis and HCC were determined using logistic regression analysis. Carriage of HSD17B13 rs72613567:TA was associated with a lower risk for developing both cirrhosis (odds ratio [OR], 0.79; 95% confidence interval [CI], 0.72-0.88; P = 8.13 x 10(-6) ) and HCC (OR, 0.77; 95% CI, 0.68-0.89; P = 2.27 x 10(-4) ), whereas carriage of PNPLA3 rs738409:G was associated with an increased risk for developing cirrhosis (OR, 1.70; 95% CI, 1.54-1.88; P = 1.52 x 10(-26) ) and HCC (OR, 1.77; 95% CI, 1.58-1.98; P = 2.31 x 10(-23) ). These associations remained significant after adjusting for age, sex, body mass index, type 2 diabetes, and country. Carriage of HSD17B13 rs72613567:TA attenuated the risk for developing cirrhosis associated with PNPLA3 rs738409:G in both men and women, but the protective effect against the subsequent development of HCC was only observed in men (ORallelic , 0.75; 95% CI, 0.64-0.87; P = 1.72 x 10(-4) ). CONCLUSIONS: Carriage of variants in PNPLA3 and HSD17B13 differentially affect the risk for developing advanced alcohol-related liver disease. A genotypic/phenotypic risk score might facilitate earlier diagnosis of HCC in this population.

Authors: F. Stickel, P. Lutz, S. Buch, H. D. Nischalke, I. Silva, V. Rausch, J. Fischer, K. H. Weiss, D. Gotthardt, J. Rosendahl, A. Marot, M. Elamly, M. Krawczyk, M. Casper, F. Lammert, T. W. M. Buckley, A. McQuillin, U. Spengler, F. Eyer, A. Vogel, S. Marhenke, J. von Felden, H. Wege, R. Sharma, S. Atkinson, A. Franke, S. Nehring, V. Moser, C. Schafmayer, L. Spahr, C. Lackner, R. E. Stauber, A. Canbay, A. Link, L. Valenti, J. I. Grove, G. P. Aithal, J. U. Marquardt, W. Fateen, S. Zopf, J. F. Dufour, J. Trebicka, C. Datz, P. Deltenre, S. Mueller, T. Berg, J. Hampe, M. Y. Morgan

Date Published: 21st Oct 2019

Publication Type: Journal

Abstract (Expand)

A quantitative understanding of complex biological systems such as tissues requires reconstructing the structure of the different components of the system. Fluorescence microscopy provides the means to visualize simultaneously several tissue components. However, it can be time consuming and is limited by the number of fluorescent markers that can be used. In this study, we describe a toolbox of algorithms based on convolutional neural networks for the prediction of 3D tissue structures by learning features embedded within single-marker images. As proof of principle, we aimed to predict the network of bile canaliculi (BC) in liver tissue using images of the cortical actin mesh as input. The actin meshwork has a characteristic organization in specific cellular domains, such as BC. However, the use of manually selected features from images of actin is not sufficient to properly reconstruct BC structure. Our deep learning framework showed a remarkable accuracy for the prediction of BC network and was successfully adapted (i.e. transfer learning) to predict the sinusoidal network. This approach allows for a complete reconstruction of tissue microarchitecture using a single fluorescent marker.

Authors: Hernan Morales-Navarrete, Fabian Segovia-Miranda, Marino Zerial, Yannis Kalaidzidis

Date Published: 1st Sep 2019

Publication Type: InProceedings

Abstract (Expand)

Functional tissue architecture originates by self-assembly of distinct cell types, following tissue-specific rules of cell-cell interactions. In the liver, a structural model of the lobule was pioneered by Elias in 1949. This model, however, is in contrast with the apparent random 3D arrangement of hepatocytes. Since then, no significant progress has been made to derive the organizing principles of liver tissue. To solve this outstanding problem, we computationally reconstructed 3D tissue geometry from microscopy images of mouse liver tissue and analyzed it applying soft-condensed-matter-physics concepts. Surprisingly, analysis of the spatial organization of cell polarity revealed that hepatocytes are not randomly oriented but follow a long-range liquid-crystal order. This does not depend exclusively on hepatocytes receiving instructive signals by endothelial cells, since silencing Integrin-beta1 disrupted both liquid-crystal order and organization of the sinusoidal network. Our results suggest that bi-directional communication between hepatocytes and sinusoids underlies the self-organization of liver tissue.

Authors: H. Morales-Navarrete, H. Nonaka, A. Scholich, F. Segovia-Miranda, W. de Back, K. Meyer, R. L. Bogorad, V. Koteliansky, L. Brusch, Y. Kalaidzidis, F. Julicher, B. M. Friedrich, M. Zerial

Date Published: 17th Jun 2019

Publication Type: Not specified

Abstract (Expand)

Many cellular organelles, including endosomes, show compartmentalization into distinct functional domains, which however cannot be resolved by diffraction-limited light microscopy. Single molecule localization microscopy (SMLM) offers nanoscale resolution but data interpretation is often inconclusive when the ultrastructural context is missing. Correlative light electron microscopy (CLEM) combining SMLM with electron microscopy (EM) enables correlation of functional sub-domains of organelles in relation to their underlying ultrastructure at nanometer resolution. However, the specific demands for EM sample preparation and the requirements for fluorescent single-molecule photo-switching are opposed. Here, we developed a novel superCLEM workflow that combines triple-colour SMLM (dSTORM & PALM) and electron tomography using semi-thin Tokuyasu thawed cryosections. We applied the superCLEM approach to directly visualize nanoscale compartmentalization of endosomes in HeLa cells. Internalized, fluorescently labelled Transferrin and EGF were resolved into morphologically distinct domains within the same endosome. We found that the small GTPase Rab5 is organized in nano-domains on the globular part of early endosomes. The simultaneous visualization of several proteins in functionally distinct endosomal sub-compartments demonstrates the potential of superCLEM to link the ultrastructure of organelles with their molecular organization at nanoscale resolution. This article is protected by copyright. All rights reserved.

Authors: C. Franke, U. Repnik, S. Segeletz, N. Brouilly, Y. Kalaidzidis, J. M. Verbavatz, M. Zerial

Date Published: 17th Jun 2019

Publication Type: Not specified

Abstract (Expand)

High-content screens (HCS) using chemical and genomic interference based on light microscopy and quantitative image analysis yielded a large amount of multi-parametric (MP) phenotypic data. Such data-sets hold great promise for the understanding of cellular mechanisms by systems biology. However, extracting functional information from data-sets, such as links between cellular processes and the functions of unknown genes, remains challenging. The limitation of HCS analysis lies in the complexity of cellular organization. Here, we assumed that cellular processes have a modular structure, and deconvolved the MP data into separate signals from different cellular modules by Blind Source Separation. We applied a combination of quantitative MP image analysis (QMPIA) and Independent Component Analysis (ICA) to an image-based HCS of endocytosis, the process whereby cells uptake molecules from the outside and distribute them to different sub-cellular organelles. We named our approach Independent Phenotypes Analysis (IPA). Phenotypic traits revealed by IPA are interpretable in terms of perturbation of specific endosomal populations (e.g. specific cargo, specific molecular markers) and of specific functional modules (early stages of endocytosis, recycling, cell cycle, etc.). The profile of perturbation of each gene in such basic phenotypic coordinates intrinsically suggest its possible mode of action.

Authors: Unknown, Kseniia Nikitina, Sandra Segeletz, Michael Kuhn, Yannis Kalaidzidis, Marino Zerial

Date Published: 2019

Publication Type: InProceedings

Abstract (Expand)

A small proportion of lean patients develop non-alcoholic fatty liver disease (NAFLD). We aimed to report the histological picture of lean NAFLD in comparison to overweight and obese NAFLD patients. Biopsy and clinical data from 466 patients diagnosed with NAFLD were stratified to groups according to body mass index (BMI): lean (BMI </= 25.0 kg/m(2), n confirmed to be appropriate = 74), overweight (BMI > 25.0 </= 30.0 kg/m(2), n = 242) and obese (BMI > 30.0 kg/m(2), n = 150). Lean NAFLD patients had a higher rate of lobular inflammation compared to overweight patients (12/74; 16.2% vs. 19/242; 7.9%; p = 0.011) but were similar to obese patients (25/150; 16.7%). Ballooning was observed in fewer overweight patients (38/242; 15.7%) compared to lean (19/74; 25.7%; p = 0.014) and obese patients (38/150; 25.3%; p = 0.006). Overweight patients had a lower rate of portal and periportal fibrosis (32/242; 13.2%) than lean (19/74; 25.7%; p = 0.019) and obese patients (37/150; 24.7%; p = 0.016). The rate of cirrhosis was higher in lean patients (6/74; 8.1%) compared to overweight (4/242; 1.7%; p = 0.010) and obese patients (3/150; 2.0% p = 0.027). In total, 60/466; 12.9% patients were diagnosed with non-alcoholic steatohepatitis (NASH). The rate of NASH was higher in lean (14/74; 18.9% p = 0.01) and obese (26/150; 17.3%; p = 0.007) compared to overweight patients (20/242; 8.3%)). Among lean patients, fasting glucose, INR and use of thyroid hormone replacement therapy were independent predictors of NASH in a multivariate model. Lean NAFLD patients were characterized by a severe histological picture similar to obese patients but are more progressed compared to overweight patients. Fasting glucose, international normalized ratio (INR) and the use of thyroid hormone replacement may serve as indicators for NASH in lean patients.

Authors: L. Denkmayr, A. Feldman, L. Stechemesser, S. K. Eder, S. Zandanell, M. Schranz, M. Strasser, U. Huber-Schonauer, S. Buch, J. Hampe, B. Paulweber, C. Lackner, H. Haufe, K. Sotlar, C. Datz, E. Aigner

Date Published: 17th Dec 2018

Publication Type: Journal

Abstract

Not specified

Authors: Hernan Morales-Navarrete, Hidenori Nonaka, Andre Scholich, Fabian Segovia-Miranda, Walter de Back, Kirstin Meyer, Roman L Bogorad, Victor Koteliansky, Lutz Brusch, Yannis Kalaidzidis, Frank Julicher, Benjamin M. Friedrich, Marino Zerial

Date Published: 13th Dec 2018

Publication Type: Not specified

Abstract (Expand)

A deeper epigenomic understanding of spatial organization of cells in human tissues is an important challenge. Here we report the first combined positional analysis of transcriptomes and methylomes across three micro-dissected zones (pericentral, intermediate and periportal) of human liver. We identify pronounced anti-correlated transcriptional and methylation gradients including a core of 271 genes controlling zonated metabolic and morphogen networks and observe a prominent porto-central gradient of DNA methylation at binding sites of 46 transcription factors. The gradient includes an epigenetic and transcriptional Wnt signature supporting the concept of a pericentral hepatocyte regeneration pathway under steady-state conditions. While donors with non-alcoholic fatty liver disease show consistent gene expression differences corresponding to the severity of the disease across all zones, the relative zonated gene expression and DNA methylation patterns remain unchanged. Overall our data provide a wealth of new positional insights into zonal networks controlled by epigenetic and transcriptional gradients in human liver.

Authors: Mario Brosch, Kathrin Kattler, Alexander Herrmann, Witigo von Schönfels, Karl Nordström, Daniel Seehofer, Georg Damm, Thomas Becker, Sebastian Zeissig, Sophie Nehring, Fabian Reichel, Vincent Moser, Raghavan Veera Thangapandi, Felix Stickel, Gustavo Baretton, Christoph Röcken, Michael Muders, Madlen Matz-Soja, Michael Krawczak, Gilles Gasparoni, Hella Hartmann, Andreas Dahl, Clemens Schafmayer, Jörn Walter, Jochen Hampe

Date Published: 1st Dec 2018

Publication Type: Not specified

Abstract (Expand)

Human plasma lipidome has been extensively studied in many pathophysiological contexts with the hope of identifying biomarkers for early diagnostics and monitoring the progression and treatment of a broad spectrum of diseases. However, despite remarkable progress in lipidomics technologies, the concordance of lipidomics measurements between independent laboratories remains limited and not fulfilling the criteria of common laboratory diagnostics. Here we highlighted a few critical aspects of epidemiological studies of the plasma lipidome, including the selection of study cohorts, collection of plasma samples as well as extraction, identification and quantification of lipids. We argue that reporting the abundances of plasma lipids as molar concentrations is a key turning point during the transition of research lipidomics into a common tool of clinical diagnostics.

Authors: Olga Vvedenskaya, Yuting Wang, Jacobo Miranda Ackerman, Oskar Knittelfelder, Andrej Shevchenko

Date Published: 20th Oct 2018

Publication Type: Not specified

Abstract (Expand)

OBJECTIVES: Variants in patatin-like phospholipase domain-containing 3 (PNPLA3; rs738409), transmembrane 6 superfamily member 2 (TM6SF2; rs58542926), and membrane bound O-acyltransferase domain containingg 7 (MBOAT7; rs641738) are risk factors for the development of alcohol-related cirrhosis. Within this population, PNPLA3 rs738409 is also an established risk factor for the development of hepatocellular carcinoma (HCC). The aim of this study was to explore possible risk associations of TM6SF2 rs58542926 and MBOAT7 rs641738 with HCC. METHODS: Risk variants in PNPLA3, TM6SF2, and MBOAT7 were genotyped in 751 cases with alcohol-related cirrhosis and HCC and in 1165 controls with alcohol-related cirrhosis without HCC. Association with the risk of developing HCC was analyzed using multivariate logistic regression. RESULTS: The development of HCC was independently associated with PNPLA3 rs738409 (ORadjusted 1.84 [95% CI 1.55-2.18], p = 1.85 × 10-12) and TM6SF2 rs58542926 (ORadjusted 1.66 [1.30-2.13], p = 5.13 × 10-05), using an additive model, and controlling the sex, age, body mass index, and type 2 diabetes mellitus; the risk associated with carriage of MBOAT7 rs641738 (ORadjusted 1.04 [0.88-1.24], p = 0.61) was not significant. The population-attributable fractions were 43.5% for PNPLA3 rs738409, 11.5% for TM6SF2 rs58542926, and 49.9% for the carriage of both the variants combined. CONCLUSIONS: Carriage of TM6SF2 rs58542926 is an additional risk factor for the development of HCC in people with alcohol-related cirrhosis. Carriage of both PNPLA3 rs738409 and TM6SF2 rs58542926 accounts for half of the attributable risk for HCC in this population. Genotyping will allow for more precise HCC risk-stratification of patients with alcohol-related cirrhosis, and genotype-guided screening algorithms would optimize patient care.

Authors: Felix Stickel, Stephan Buch, Hans Dieter Nischalke, Karl Heinz Weiss, Daniel Gotthardt, Janett Fischer, Jonas Rosendahl, Astrid Marot, Mona Elamly, Markus Casper, Frank Lammert, Andrew McQuillin, Steffen Zopf, Ulrich Spengler, Silke Marhenke, Martha M. Kirstein, Arndt Vogel, Florian Eyer, Johann von Felden, Henning Wege, Thorsten Buch, Clemens Schafmayer, Felix Braun, Pierre Deltenre, Thomas Berg, Marsha Y. Morgan, Jochen Hampe

Date Published: 1st Oct 2018

Publication Type: Not specified

Abstract (Expand)

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder in industrialized countries. Nonalcoholic steatohepatitis is the fastest growing cause for liver failure. Bariatric surgery represents a treatment option for NAFLD with an established effect on liver histology. OBJECTIVES: We aimed to assess the impact of bariatric surgery on standardized liver histology using the NAFLD activity score. SETTING: Retrospective comparison of metabolic data before and after bariatric surgery and comparison of sleeve gastrectomy and Roux-en-Y gastric bypass. The study was performed in an academic center, the university hospital Schleswig-Holstein in Kiel, Germany. METHODS: Between 2009 and 2012, bariatric surgery was performed in 257 patients according to the national guidelines, and a liver biopsy was obtained in 150 of these patients during surgery. A follow-up biopsy was available in 53 of these patients at a median of 192 days. Liver histology was analyzed using the NAFLD activity score. In this subgroup of 53 patients an analysis of the metabolic improvement after bariatric surgery and a comparative analysis between the 2 different operative procedures was performed. RESULTS: The study cohort showed improvement of preoperative pathologic liver histology findings after operative procedures took place. Both surgery methods improved the NAFLD activity score significantly, all improvement -2.0 (confidence interval -2.5 to -1.0; P < .001); Roux-en-Y gastric bypass, improvement -1.0 (confidence interval -2.0 to -.0; P=.038); sleeve gastrectomy, improvement -2.5 (confidence interval -3.5 to -1.5; P < .001). No differences were found with regard to histologic recovery between gastric bypass and sleeve gastrectomy (P = .22). CONCLUSIONS: Bariatric surgery significantly improves NAFLD.

Authors: W. von Schonfels, J. H. Beckmann, M. Ahrens, A. Hendricks, C. Rocken, S. Szymczak, J. Hampe, C. Schafmayer

Date Published: 28th Aug 2018

Publication Type: Not specified

Abstract (Expand)

OBJECTIVE: Homozygous alpha1-antitrypsin (AAT) deficiency increases the risk for developing cirrhosis, whereas the relevance of heterozygous carriage remains unclear. Hence, we evaluated the impact of the two most relevant AAT variants ('Pi*Z' and 'Pi*S'), present in up to 10% of Caucasians, on subjects with non-alcoholic fatty liver disease (NAFLD) or alcohol misuse. DESIGN: We analysed multicentric case-control cohorts consisting of 1184 people with biopsy-proven NAFLD and of 2462 people with chronic alcohol misuse, both cohorts comprising cases with cirrhosis and controls without cirrhosis. Genotyping for the Pi*Z and Pi*S variants was performed. RESULTS: The Pi*Z variant presented in 13.8% of patients with cirrhotic NAFLD but only in 2.4% of counterparts without liver fibrosis (p<0.0001). Accordingly, the Pi*Z variant increased the risk of NAFLD subjects to develop cirrhosis (adjusted OR=7.3 (95% CI 2.2 to 24.8)). Likewise, the Pi*Z variant presented in 6.2% of alcohol misusers with cirrhosis but only in 2.2% of alcohol misusers without significant liver injury (p<0.0001). Correspondingly, alcohol misusers carrying the Pi*Z variant were prone to develop cirrhosis (adjusted OR=5.8 (95% CI 2.9 to 11.7)). In contrast, the Pi*S variant was not associated with NAFLD-related cirrhosis and only borderline with alcohol-related cirrhosis (adjusted OR=1.47 (95% CI 0.99 to 2.19)). CONCLUSION: The Pi*Z variant is the hitherto strongest single nucleotide polymorphism-based risk factor for cirrhosis in NAFLD and alcohol misuse, whereas the Pi*S variant confers only a weak risk in alcohol misusers. As 2%-4% of Caucasians are Pi*Z carriers, this finding should be considered in genetic counselling of affected individuals.

Authors: P. Strnad, S. Buch, K. Hamesch, J. Fischer, J. Rosendahl, R. Schmelz, S. Brueckner, M. Brosch, C. V. Heimes, V. Woditsch, D. Scholten, H. D. Nischalke, S. Janciauskiene, M. Mandorfer, M. Trauner, M. J. Way, A. McQuillin, M. C. Reichert, M. Krawczyk, M. Casper, F. Lammert, F. Braun, W. von Schonfels, S. Hinz, G. Burmeister, C. Hellerbrand, A. Teufel, A. Feldman, J. M. Schattenberg, H. Bantel, A. Pathil, M. Demir, J. Kluwe, T. Boettler, M. Ridinger, N. Wodarz, M. Soyka, M. Rietschel, F. Kiefer, T. Weber, S. Marhenke, A. Vogel, H. Hinrichsen, A. Canbay, M. Schlattjan, K. Sosnowsky, C. Sarrazin, J. von Felden, A. Geier, P. Deltenre, B. Sipos, C. Schafmayer, M. Nothnagel, E. Aigner, C. Datz, F. Stickel, M. Y. Morgan, J. Hampe, T. Berg, C. Trautwein

Date Published: 3rd Aug 2018

Publication Type: Journal

Abstract (Expand)

Shotgun analysis provides a quantitative snapshot of the lipidome composition of cells, tissues, or model organisms; however, it does not elucidate the spatial distribution of lipids. Here we demonstrate that shotgun analysis could quantify low-picomole amounts of lipids isolated by laser capture microdissection (LCM) of hundred micrometer-sized histological zones visualized at the cryosections of tissues. We identified metabolically distinct periportal (pp) and pericentral (pc) zones by immunostaining of 20 mum thick cryosections of a healthy mouse liver. LCM was used to ablate, catapult, and collect the tissue material from 10 to 20 individual zones covering a total area of 0.3-0.5 mm(2) and containing ca. 500 cells. Top-down shotgun profiling relying upon computational stitching of 61 targeted selective ion monitoring ( t-SIM) spectra quantified more than 200 lipid species from 17 lipid classes including glycero- and glycerophospholipids, sphingolipids, cholesterol esters, and cholesterol. Shotgun LCM revealed the overall commonality of the full lipidome composition of pp and pc zones along with significant ( p < 0.001) difference in the relative abundance of 13 lipid species. Follow-up proteomics analyses of pellets recovered from an aqueous phase saved after the lipid extraction identified 13 known and 7 new protein markers exclusively present in pp or in pc zones and independently validated the specificity of their visualization, isolation, and histological assignment.

Authors: O. Knittelfelder, S. Traikov, O. Vvedenskaya, A. Schuhmann, S. Segeletz, A. Shevchenko, A. Shevchenko

Date Published: 30th Jul 2018

Publication Type: Not specified

Abstract (Expand)

BACKGROUND: Liver transplantation (LTx) is a potentially curative treatment option for hepatocellular carcinoma (HCC) in cirrhosis. However, patients, where HCC is already a systemic disease, LTx may be individually harmful and has a negative impact on donor organ usage. Thus, there is a need for improved selection criteria beyond nodule morphology to select patients with a favorable outcome for LTx in multifocal HCC. Evolutionary distance measured from genome-wide single-nucleotide polymorphism data between tumor nodules and the cirrhotic liver may be a prognostic marker of survival after LTx for multifocal HCC. METHODS: In a retrospective multicenter study, clinical data and formalin-fixed paraffin-embedded specimens of the liver and 2 tumor nodules were obtained from explants of 30 patients in the discovery and 180 patients in the replication cohort. DNA was extracted from formalin-fixed paraffin-embedded specimens followed by genome wide single-nucleotide polymorphism genotyping. RESULTS: Genotype quality criteria allowed for analysis of 8 patients in the discovery and 17 patients in the replication set. DNA concentrations of a total of 25 patients fulfilled the quality criteria and were included in the analysis. Both, in the discovery (P = 0.04) and in the replication data sets (P = 0.01), evolutionary distance was associated with the risk of recurrence of HCC after transplantation (combined P = 0.0002). In a univariate analysis, evolutionary distance (P = 7.4 x 10) and microvascular invasion (P = 1.31 x 10) were significantly associated with survival in a Cox regression analysis. CONCLUSIONS: Evolutionary distance allows for the determination of a high-risk group of recurrence if preoperative liver biopsy is considered.

Authors: N. Heits, M. Brosch, A. Herrmann, R. Behrens, C. Rocken, H. Schrem, A. Kaltenborn, J. Klempnauer, H. H. Kreipe, B. Reichert, C. Lenschow, C. Wilms, T. Vogel, H. Wolters, E. Wardelmann, D. Seehofer, S. Buch, S. Zeissig, S. Pannach, N. Raschzok, M. Dietel, W. von Schoenfels, S. Hinz, A. Teufel, M. Evert, A. Franke, T. Becker, F. Braun, J. Hampe, C. Schafmayer

Date Published: 12th Jul 2018

Publication Type: Not specified

Abstract (Expand)

Solute carrier membrane transporters (SLCs) control cell exposure to small-molecule drugs, thereby contributing to drug efficacy and failure and/or adverse effects. Moreover, SLCs are genetically linked to various diseases. Hence, in-depth knowledge of SLC function is fundamental for a better understanding of disease pathophysiology and the drug development process. Given that the model organism Drosophila melanogaster (fruit fly) expresses SLCs, such as for the excretion of endogenous and toxic compounds by the hindgut and Malpighian tubules, equivalent to human intestine and kidney, this system appears to be a promising preclinical model to use to study human SLCs. Here, we systematically compare current knowledge of SLCs in Drosophila and humans and describe the Drosophila model as an innovative tool for drug development.

Authors: Y. Wang, B. Moussian, E. Schaeffeler, M. Schwab, A. T. Nies

Date Published: 12th Jun 2018

Publication Type: Not specified

Abstract (Expand)

The solute carrier (SLC) SLC16 gene family comprises 14 members and encodes for monocarboxylate transporters (MCTs), which mediate the absorption and distribution of monocarboxylic compounds across plasma membranes. As the knowledge about their physiological function, activity, and regulation increases, their involvement and contribution to cancer and other diseases become increasingly evident. Moreover, promising opportunities for therapeutic interventions by directly targeting their endogenous functions or by exploiting their ability to deliver drugs to specific organ sites emerge.

Authors: P. Fisel, E. Schaeffeler, M. Schwab

Date Published: 17th Apr 2018

Publication Type: Not specified

Abstract (Expand)

Neurotoxic bilirubin is the end product of heme catabolism in mammals. Bilirubin is solely conjugated by uridine diphospho-glucuronosyltransferase 1A1, which is a membrane-bound enzyme that catalyzes the transfer of glucuronic acid. Due to low function of hepatic and intestinal uridine diphospho-glucuronosyltransferase 1A1 during the neonatal period, human neonates develop mild to severe physiological hyperbilirubinemia. Accumulation of bilirubin in the brain leads to the onset of irreversible brain damage, termed kernicterus. Breastfeeding is one of the most significant factors that increase the risk of developing kernicterus in infants. Why does this most natural way of feeding increase the risk of brain damage or even death? This question leads to the hypothesis that breast milk-induced hyperbilirubinemia might bring certain benefits that outweigh those risks. While bilirubin is neurotoxic and cytotoxic, this compound is also a potent antioxidant. There are studies showing improved clinical conditions in patients with hyperbilirubinemia. Accumulating evidence also shows that genetic polymorphisms linked to hyperbilirubinemia are beneficial against various diseases. In this review article, we first introduce the production, metabolism, and transport of bilirubin. We then discuss the potential benefits of neonatal and adult hyperbilirubinemia. Finally, epigenetic factors as well as metabolomic information associated with hyperbilirubinemia are described. This review article advances the understanding of the physiological importance of the paradoxical compound bilirubin. (Hepatology 2018;67:1609-1619).

Authors: Ryoichi Fujiwara, Mathias Haag, Elke Schaeffeler, Anne T. Nies, Ulrich M. Zanger, Matthias Schwab

Date Published: 1st Apr 2018

Publication Type: Not specified

Abstract

Not specified

Authors: Daniel Moyo, Lynette Beattie, Paul S. Andrews, John W. J. Moore, Jon Timmis, Amy Sawtell, Stefan Hoehme, Adam T. Sampson, Paul M. Kaye

Date Published: 27th Mar 2018

Publication Type: Journal

Abstract (Expand)

OBJECTIVES: Variants in patatin-like phospholipase domain-containing 3 (PNPLA3; rs738409), transmembrane 6 superfamily member 2 (TM6SF2; rs58542926), and membrane bound O-acyltransferase domain containing 7 (MBOAT7; rs641738) are risk factors for the development of alcohol-related cirrhosis. Within this population, PNPLA3 rs738409 is also an established risk factor for the development of hepatocellular carcinoma (HCC). The aim of this study was to explore possible risk associations of TM6SF2 rs58542926 and MBOAT7 rs641738 with HCC. METHODS: Risk variants in PNPLA3, TM6SF2, and MBOAT7 were genotyped in 751 cases with alcohol-related cirrhosis and HCC and in 1165 controls with alcohol-related cirrhosis without HCC. Association with the risk of developing HCC was analyzed using multivariate logistic regression. RESULTS: The development of HCC was independently associated with PNPLA3 rs738409 (ORadjusted 1.84 [95% CI 1.55-2.18], p = 1.85 x 10(-12)) and TM6SF2 rs58542926 (ORadjusted 1.66 [1.30-2.13], p = 5.13 x 10(-05)), using an additive model, and controlling the sex, age, body mass index, and type 2 diabetes mellitus; the risk associated with carriage of MBOAT7 rs641738 (ORadjusted 1.04 [0.88-1.24], p = 0.61) was not significant. The population-attributable fractions were 43.5% for PNPLA3 rs738409, 11.5% for TM6SF2 rs58542926, and 49.9% for the carriage of both the variants combined. CONCLUSIONS: Carriage of TM6SF2 rs58542926 is an additional risk factor for the development of HCC in people with alcohol-related cirrhosis. Carriage of both PNPLA3 rs738409 and TM6SF2 rs58542926 accounts for half of the attributable risk for HCC in this population. Genotyping will allow for more precise HCC risk-stratification of patients with alcohol-related cirrhosis, and genotype-guided screening algorithms would optimize patient care.

Authors: F. Stickel, S. Buch, H. D. Nischalke, K. H. Weiss, D. Gotthardt, J. Fischer, J. Rosendahl, A. Marot, M. Elamly, M. Casper, F. Lammert, A. McQuillin, S. Zopf, U. Spengler, S. Marhenke, M. M. Kirstein, A. Vogel, F. Eyer, J. von Felden, H. Wege, T. Buch, C. Schafmayer, F. Braun, P. Deltenre, T. Berg, M. Y. Morgan, J. Hampe

Date Published: 15th Mar 2018

Publication Type: Journal

Abstract (Expand)

New technologies to generate, store and retrieve medical and research data are inducing a rapid change in clinical and translational research and health care. Systems medicine is the interdisciplinary approach wherein physicians and clinical investigators team up with experts from biology, biostatistics, informatics, mathematics and computational modeling to develop methods to use new and stored data to the benefit of the patient. We here provide a critical assessment of the opportunities and challenges arising out of systems approaches in medicine and from this provide a definition of what systems medicine entails. Based on our analysis of current developments in medicine and healthcare and associated research needs, we emphasize the role of systems medicine as a multilevel and multidisciplinary methodological framework for informed data acquisition and interdisciplinary data analysis to extract previously inaccessible knowledge for the benefit of patients.

Authors: R. Apweiler, T. Beissbarth, M. R. Berthold, N. Bluthgen, Y. Burmeister, O. Dammann, A. Deutsch, F. Feuerhake, A. Franke, J. Hasenauer, S. Hoffmann, T. Hofer, P. L. Jansen, L. Kaderali, U. Klingmuller, I. Koch, O. Kohlbacher, L. Kuepfer, F. Lammert, D. Maier, N. Pfeifer, N. Radde, M. Rehm, I. Roeder, J. Saez-Rodriguez, U. Sax, B. Schmeck, A. Schuppert, B. Seilheimer, F. J. Theis, J. Vera, O. Wolkenhauer

Date Published: 3rd Mar 2018

Publication Type: Not specified

Abstract (Expand)

Background: The extent of resection and the frequency of liver surgery have increased over the past decades, enabled by improved haemostasis provided by electrosurgical liver dissection. Because extensive liver surgery is still associated with lethal complications, further optimisation of the technique and a better molecular understanding of hepatic wound healing and regeneration are needed. Systematic studies and a mouse model reflecting the clinical reality of liver surgery are lacking. Methods: We performed liver resection in mice with a monopolar electrocautery device in comparison to the classical en-bloc ligation method. Regeneration was assessed using liver weight and BrDU immunohistochemistry after sacrifice and non-invasively using micro computed tomography (µCT). Results: Mortality in the electrosurgical model was similar to the ligation method given an identical extent of resection. Regeneration of liver proceeded significantly faster in the electrosurgical group: Liver weight was 25.6% higher at sacrifice after 168h (p=0.0003). Concordantly, both µCT analysis (22.6% higher liver volume at 168h, p=0.008) and BrDU staining (71.4% higher proliferation at 72h, p=0.0005) indicated superior regeneration of liver after electrosurgical partial hepatectomy. Conclusions: The mode of liver resection has a profound impact on regeneration and should be studied molecularly using the presented novel model of electrosurgical liver resection.

Authors: W. von Schonfels, Clemens Schafmayer, Jochen Hampe

Date Published: 27th Jan 2018

Publication Type: Not specified

Abstract (Expand)

Transient hepatic steatosis upon liver resection supposes functional relationships between lipid metabolism and liver regeneration. Repin1 has been suggested as candidate gene for obesity and dyslipidemia by regulating key genes of lipid metabolism and lipid storage. Herein, we characterized the regenerative potential of mice with a hepatic deletion of Repin1 (LRep1-/-) after partial hepatectomy (PH) in order to determine the functional significance of Repin1 in liver regeneration. Lipid dynamics and the regenerative response were analyzed at various time points after PH. Hepatic Repin1 deficiency causes a significantly decreased transient hepatic lipid accumulation. Defects in lipid uptake, as analyzed by decreased expression of the fatty acid transporter Cd36 and Fatp5, may contribute to attenuated and shifted lipid accumulation, accompanied by altered extent and chronological sequence of liver cell proliferation in LRep1-/- mice. In vitro steatosis experiments with primary hepatocytes also revealed attenuated lipid accumulation and occurrence of smaller lipid droplets in Repin1-deficient cells, while no direct effect on proliferation in HepG2 cells was observed. Based on these results, we propose that hepatocellular Repin1 might be of functional significance for early accumulation of lipids in hepatocytes after PH, facilitating efficient progression of liver regeneration.

Authors: K. Abshagen, B. Degenhardt, M. Liebig, A. Wendt, B. Genz, U. Schaeper, M. Stumvoll, U. Hofmann, M. Frank, B. Vollmar, N. Kloting

Date Published: 18th Jan 2018

Publication Type: Not specified

Abstract (Expand)

Tamoxifen, a standard therapy for breast cancer, is metabolized to compounds with anti-estrogenic as well as estrogen-like action at the estrogen receptor. Little is known about the formation of estrogen-like metabolites and their biological impact. Thus, we characterized the estrogen-like metabolites tamoxifen bisphenol and metabolite E for their metabolic pathway and their influence on cytochrome P450 activity and ADME gene expression. The formation of tamoxifen bisphenol and metabolite E was studied in human liver microsomes and Supersomes. Cellular metabolism and impact on CYP enzymes was analyzed in upcyte(R) hepatocytes. The influence of 5 microM of tamoxifen, anti-estrogenic and estrogen-like metabolites on CYP activity was measured by HPLC MS/MS and on ADME gene expression using RT-PCR analyses. Metabolite E was formed from tamoxifen by CYP2C19, 3A and 1A2 and from desmethyltamoxifen by CYP2D6, 1A2 and 3A. Tamoxifen bisphenol was mainly formed from (E)- and (Z)-metabolite E by CYP2B6 and CYP2C19, respectively. Regarding phase II metabolism, UGT2B7, 1A8 and 1A3 showed highest activity in glucuronidation of tamoxifen bisphenol and metabolite E. Anti-estrogenic metabolites (Z)-4-hydroxytamoxifen, (Z)-endoxifen and (Z)-norendoxifen inhibited the activity of CYP2C enzymes while tamoxifen bisphenol consistently induced CYPs similar to rifampicin and phenobarbital. On the transcript level, highest induction up to 5.6-fold was observed for CYP3A4 by tamoxifen, (Z)-4-hydroxytamoxifen, tamoxifen bisphenol and (E)-metabolite E. Estrogen-like tamoxifen metabolites are formed in CYP-dependent reactions and are further metabolized by glucuronidation. The induction of CYP activity by tamoxifen bisphenol and the inhibition of CYP2C enzymes by anti-estrogenic metabolites may lead to drug-drug-interactions.

Authors: J. Johanning, P. Kroner, M. Thomas, U. M. Zanger, A. Norenberg, M. Eichelbaum, M. Schwab, H. Brauch, W. Schroth, T. E. Murdter

Date Published: 28th Dec 2017

Publication Type: Not specified

Abstract

Not specified

Authors: Stefan Hoehme, Francois Bertaux, William Weens, Bettina Grasl-Kraupp, Jan G. Hengstler, Dirk Drasdo

Date Published: 28th Dec 2017

Publication Type: Not specified

Abstract (Expand)

Lipidomes undergo permanent extensive remodeling, but how the turnover rate differs between lipid classes and molecular species is poorly understood. We employed metabolic (15)N labeling and shotgun ultra-high-resolution mass spectrometry (sUHR) to quantify the absolute (molar) abundance and determine the turnover rate of glycerophospholipids and sphingolipids by direct analysis of total lipid extracts. sUHR performed on a commercial Orbitrap Elite instrument at the mass resolution of 1.35 x 10(6) (m/z 200) baseline resolved peaks of (13)C isotopes of unlabeled and monoisotopic peaks of (15)N labeled lipids (Deltam = 0.0063 Da). Therefore, the rate of metabolic (15)N labeling of individual lipid species could be determined without compromising the scope, accuracy, and dynamic range of full-lipidome quantitative shotgun profiling. As a proof of concept, we employed sUHR to determine the lipidome composition and fluxes of 62 nitrogen-containing membrane lipids in human hepatoma HepG2 cells.

Authors: K. Schuhmann, K. Srzentic, K. O. Nagornov, H. Thomas, T. Gutmann, U. Coskun, Y. O. Tsybin, A. Shevchenko

Date Published: 5th Dec 2017

Publication Type: Not specified

Abstract (Expand)

Chemical reaction networks are ubiquitous in biology, and their dynamics is fundamentally stochastic. Here, we present the software library pSSAlib, which provides a complete and concise implementation of the most efficient partial-propensity methods for simulating exact stochastic chemical kinetics. pSSAlib can import models encoded in Systems Biology Markup Language, supports time delays in chemical reactions, and stochastic spatiotemporal reaction-diffusion systems. It also provides tools for statistical analysis of simulation results and supports multiple output formats. It has previously been used for studies of biochemical reaction pathways and to benchmark other stochastic simulation methods. Here, we describe pSSAlib in detail and apply it to a new model of the endocytic pathway in eukaryotic cells, leading to the discovery of a stochastic counterpart of the cut-out switch motif underlying early-to-late endosome conversion. pSSAlib is provided as a stand-alone command-line tool and as a developer API. We also provide a plug-in for the SBMLToolbox. The open-source code and pre-packaged installers are freely available from http://mosaic.mpi-cbg.de.

Authors: Oleksandr Ostrenko, Pietro Incardona, Rajesh Ramaswamy, Lutz Brusch, Ivo F. Sbalzarini

Date Published: 4th Dec 2017

Publication Type: Not specified

Abstract (Expand)

Cirrhosis represents the end-stage of any persistent chronically active liver disease. It is characterized by the complete replacement of normal liver tissue by fibrosis, regenerative nodules, and complete fibrotic vascularized septa. The resulting angioarchitectural distortion contributes to an increasing intrahepatic vascular resistance, impeding liver perfusion and leading to portal hypertension. To date, knowledge on the dynamically evolving pathological changes of the hepatic vasculature during cirrhogenesis remains limited. More specifically, detailed anatomical data on the vascular adaptations during disease development is lacking. To address this need, we studied the 3D architecture of the hepatic vasculature during induction of cirrhogenesis in a rat model. Cirrhosis was chemically induced with thioacetamide (TAA). At predefined time points, the hepatic vasculature was fixed and visualized using a combination of vascular corrosion casting and deep tissue microscopy. Three-dimensional reconstruction and data-fitting enabled cirrhogenic features to extracted at multiple scales, portraying the impact of cirrhosis on the hepatic vasculature. At the macrolevel, we noticed that regenerative nodules severely compressed pliant venous vessels from 12 weeks of TAA intoxication onwards. Especially hepatic veins were highly affected by this compression, with collapsed vessel segments severely reducing perfusion capabilities. At the microlevel, we discovered zone-specific sinusoidal degeneration, with sinusoids located near the surface being more affected than those in the middle of a liver lobe. Our data shed light on and quantify the evolving angioarchitecture during cirrhogenesis. These findings may prove helpful for future targeted invasive interventions.

Authors: G. Peeters, C. Debbaut, A. Friebel, P. Cornillie, W. H. De Vos, K. Favere, I. Vander Elst, T. Vandecasteele, T. Johann, L. Van Hoorebeke, D. Monbaliu, D. Drasdo, S. Hoehme, W. Laleman, P. Segers

Date Published: 4th Dec 2017

Publication Type: Not specified

Abstract (Expand)

AIM: To apply an innovative LC-MS/MS method to quantify thiopurine metabolites in human hepatocytes and to associate them to cytotoxicity. METHODS: Immortalized human hepatocytes (IHH cells) were treated for 48 and 96 h, with 1.4 x 10(-4) M azathioprine and 1.1 x 10(-3) M mercaptopurine, concentrations corresponding to the IC50 values calculated after 96 h exposure in previous cytotoxicity analysis. After treatments, cells were collected for LC-MS/MS analysis to quantify 11 thiopurine metabolites with different level of phosphorylation and viable cells were counted by trypan blue exclusion assay to determine thiopurines in vitro effect on cell growth and survival. Statistical significance was determined by analysis of variance (ANOVA). RESULTS: Azathioprine and mercaptopurine had a significant time-dependent cytotoxic effect (p-value ANOVA = 0.012), with a viable cell count compared to controls of 55.5% and 67.5% respectively after 48 h and 23.7% and 36.1% after 96 h; no significant difference could be observed between the two drugs. Quantification of thiopurine metabolites evidenced that the most abundant metabolite was TIMP, representing 57.1% and 40.3% of total metabolites after 48 and 96 h. Total thiopurine metabolites absolute concentrations decreased over time: total mean content decreased from 469.9 pmol/million cells to 83.6 pmol/million cells (p-value ANOVA = 0.0070). However, considering the relative amount of thiopurine metabolites, TGMP content significantly increased from 11.4% cells to 26.4% (p-value ANOVA = 0.017). A significant association between thiopurine effects and viable cell counts could be detected only for MeTIMP: lower MeTIMP concentrations were associated with lower cell survival (p-value ANOVA = 0.011). Moreover, the ratio between MeTIMP and TGMP metabolites directly correlated with cell survival (p-value ANOVA = 0.037). CONCLUSION: Detailed quantification of thiopurine metabolites in a human hepatocytes model provided useful insights on the association between thioguanine and methyl-thioinosine nucleotides with cell viability.

Authors: M. Pelin, E. Genova, L. Fusco, M. Marisat, U. Hofmann, D. Favretto, M. Lucafo, A. Taddio, S. Martelossi, A. Ventura, G. Stocco, M. Schwab, G. Decorti

Date Published: 12th Aug 2017

Publication Type: Not specified

Abstract (Expand)

Alcoholic liver disease (ALD) is a leading cause of liver cirrhosis, liver cancer, and related mortality. The endocannabinoid system contributes to the development of chronic liver diseases, where cannabinoid receptor 2 (CB2) has been shown to have a protecting role. Thus, here, we investigated how CB2 agonism by 4'-O-methylhonokiol (MHK), a biphenyl from Magnolia grandiflora, affects chronic alcohol-induced liver fibrosis and damage in mice. A combination of alcohol (10% vol/vol) and CCl4 (1 ml/kg) was applied to C57BL/6 mice for 5 weeks. MHK (5 mg/kg) was administered daily, and liver damage assessed by serum AST and ALT levels, histology, gene, and protein expression. Endocannabinoids (ECs) and related lipid derivatives were measured by liquid chromatography and mass spectrometry (LC-MS) in liver tissues. In vitro, MHK was studied in TGFbeta1-activated hepatic stellate cells (HSC). MHK treatment alleviated hepatic fibrosis, paralleled by induced expression of matrix metalloproteinases (MMP)-2, -3, -9, and -13, and downregulation of CB1 mRNA. Necrotic lesions and hepatic inflammation were moderately improved, while IL-10 mRNA increased and IFNgamma, Mcl-1, JNK1, and RIPK1 normalized by MHK. Hepatic anandamide (AEA) and related N-acetylethanolamines (NAEs) were elevated in MHK group, whereas fatty acid synthase and diacylglycerol O-acyltransferase 2 expression reduced. In vitro, MHK prevented HSC activation and induced apoptosis via induction of bak1 and bcl-2. To conclude, MHK revealed hepatoprotective effects during alcohol-induced liver damage through the induction of MMPs, AEA, and NAEs and prevention of HSC activation, indicating MHK as a potent therapeutic for liver fibrosis and ALD. KEY MESSAGES: Methylhonokiol improves liver damage and survival. Methylhonokiol reduces hepatic fibrosis and necroinflammation. Methylhonokiol prevents myofibroblast activation and induces apoptosis. Methylhonokiol upregulates endocannabinoids and related N-acylethanolamines. Methylhonokiol contributes to lipid hydrolysis via PPARalpha/gamma.

Authors: E. Patsenker, A. Chicca, V. Petrucci, S. Moghadamrad, A. de Gottardi, J. Hampe, J. Gertsch, N. Semmo, F. Stickel

Date Published: 8th Jul 2017

Publication Type: Not specified

Abstract

Not specified

Authors: S. Stengel, A. Stallmach, K. Richter, A. Landrock, J. Hampe, T. Bruns

Date Published: 6th Jul 2017

Publication Type: Not specified

Abstract (Expand)

Clinical lipidomics is an emerging biomarker discovery approach that compares lipid profiles under pathologically and physiologically normal conditions. Here we describe a method for the absolute (molar) quantification of more than 200 molecules from 14 major lipid classes from 5 muL of human blood plasma using high-resolution top-down shotgun mass spectrometry. Because of its technical simplicity and robustness, the protocol lends itself for high-throughput clinical lipidomics screens.

Authors: S. Sales, O. Knittelfelder, A. Shevchenko

Date Published: 4th Jul 2017

Publication Type: Not specified

Abstract (Expand)

Early indication of late-stage failure of novel candidate drugs could be facilitated by continuous integration, assessment, and transfer of knowledge acquired along pharmaceutical development programs. We here present a translational systems pharmacology workflow that combines drug cocktail probing in a specifically designed clinical study, physiologically based pharmacokinetic modeling, and Bayesian statistics to identify and transfer (patho-)physiological and drug-specific knowledge across distinct patient populations. Our work builds on two clinical investigations, one with 103 healthy volunteers and one with 79 diseased patients from which we systematically derived physiological information from pharmacokinetic data for a reference probe drug (midazolam) at the single-patient level. Taking into account the acquired knowledge describing (patho-)physiological alterations in the patient cohort allowed the successful prediction of the population pharmacokinetics of a second, candidate probe drug (torsemide) in the patient population. In addition, we identified significant relations of the acquired physiological processes to patient metadata from liver biopsies. The presented prototypical systems pharmacology approach is a proof of concept for model-based translation across different stages of pharmaceutical development programs. Applied consistently, it has the potential to systematically improve predictivity of pharmacokinetic simulations by incorporating the results of clinical trials and translating them to subsequent studies.

Authors: M. Krauss, U. Hofmann, C. Schafmayer, S. Igel, J. Schlender, C. Mueller, M. Brosch, W. von Schoenfels, W. Erhart, A. Schuppert, M. Block, E. Schaeffeler, G. Boehmer, L. Goerlitz, J. Hoecker, J. Lippert, R. Kerb, J. Hampe, L. Kuepfer, M. Schwab

Date Published: 27th Jun 2017

Publication Type: Not specified

Abstract (Expand)

Shotgun lipidomics relies on the direct infusion of total lipid extracts into a high resolution tandem mass spectrometer. A single shotgun analysis produces several hundred of densely populated FT MS and FT MS/MS spectra, each of which might comprise thousands of peaks although a very small percentage of those belong to lipids. Eliminating noise by adjusting a minimal peak intensity threshold is biased and inefficient since lipid species and classes vary in their natural abundance and ionization capacity. We developed a method of peak intensity-independent noise filtering in shotgun FT MS and FT MS/MS spectra that capitalizes on a stable composition of the infused analyte leading to consistent time-independent detection of its bona fide components. Repetition rate filtering relies on a single quantitative measure of peaks detection reproducibility irrespectively of their absolute intensities, masses, or assumed elemental compositions. In comparative experiments, it removed more than 95% of signals detectable in shotgun spectra without compromising the accuracy and scope of lipid identification and quantification. It also accelerated spectra processing by 15-fold and increased the number of simultaneously processed spectra by approximately 500-fold hence eliminating the major bottleneck in high-throughput bottom-up shotgun lipidomics.

Authors: K. Schuhmann, H. Thomas, J. M. Ackerman, K. O. Nagornov, Y. O. Tsybin, A. Shevchenko

Date Published: 15th Jun 2017

Publication Type: Not specified

Abstract (Expand)

Pregnane X receptor (PXR) mainly regulates xenobiotic metabolism and detoxification. Additionally, it exerts pleiotropic effects on liver physiology, which in large parts depend on transrepression of other liver-enriched transcription factors. Based on the hypothesis that lower expression levels of PXR may reduce the extent of this inhibition, an exploratory genome-wide transcriptomic profiling was performed using HepG2 cell clones with different expression levels of PXR. This screen and confirmatory real-time RT-PCR identified sphingomyelin phosphodiesterase acid-like (SMPDL) 3A, a novel nucleotide phosphodiesterase and phosphoramidase, as being up-regulated by PXR-deficiency. Transient siRNA-mediated knock-down of PXR in HepG2 cells and primary human hepatocytes similarly induced mRNA up-regulation, which translated into increased intracellular and secreted extracellular protein levels. Interestingly, ligand-dependent PXR activation also induced SMPDL3A in HepG2 cells and primary human hepatocytes. Electrophoretic mobility shift assays and chromatin immunoprecipitation demonstrated binding of PXR to the previously identified liver X receptor (LXR)-binding DR4 motif as well as to an adjacent ER8 motif in intron 1 of SMPDL3A. Constitutive binding of the unliganded receptor to the intron 1 chromatin indicated ligand-independent repression of SMPDL3A by PXR. Transient transfection and reporter gene analysis confirmed the specific role of these motifs in PXR- and LXR-dependent activation of the SMPDL3A intronic enhancer. PXR inhibited LXR mainly by competition for binding sites. In conclusion, this study describes that a decrease in PXR expression levels and ligand-dependent activation of PXR and LXR increase hepatic SMPDL3A levels, which possibly connects these receptors to hepatic purinergic signaling and phospholipid metabolism and may result in drug-drug interactions with phosphoramidate pro-drugs.

Authors: J. Jeske, A. Bitter, W. E. Thasler, T. S. Weiss, M. Schwab, O. Burk

Date Published: 18th Apr 2017

Publication Type: Not specified

Abstract (Expand)

Bile, the central metabolic product of the liver, is transported by the bile canaliculi network. The impairment of bile flow in cholestatic liver diseases has urged a demand for insights into its regulation. Here, we developed a predictive 3D multi-scale model that simulates fluid dynamic properties successively from the subcellular to the tissue level. The model integrates the structure of the bile canalicular network in the mouse liver lobule, as determined by high-resolution confocal and serial block-face scanning electron microscopy, with measurements of bile transport by intravital microscopy. The combined experiment-theory approach revealed spatial heterogeneities of biliary geometry and hepatocyte transport activity. Based on this, our model predicts gradients of bile velocity and pressure in the liver lobule. Validation of the model predictions by pharmacological inhibition of Rho kinase demonstrated a requirement of canaliculi contractility for bile flow in vivo. Our model can be applied to functionally characterize liver diseases and quantitatively estimate biliary transport upon drug-induced liver injury.

Authors: K. Meyer, O. Ostrenko, G. Bourantas, H. Morales-Navarrete, N. Porat-Shliom, F. Segovia-Miranda, H. Nonaka, A. Ghaemi, J. M. Verbavatz, L. Brusch, I. Sbalzarini, Y. Kalaidzidis, R. Weigert, M. Zerial

Date Published: 18th Mar 2017

Publication Type: Not specified

Abstract (Expand)

Alcoholic liver disease (ALD) is a leading cause of cirrhosis, liver cancer, and acute and chronic liver failure and as such causes significant morbidity and mortality. While alcohol consumption is slightly decreasing in several European countries, it is rising in others and remains high in many countries around the world. The pathophysiology of ALD is still incompletely understood but relates largely to the direct toxic effects of alcohol and its main intermediate, acetaldehyde. Recently, novel putative mechanisms have been identified in systematic scans covering the entire human genome and raise new hypotheses on previously unknown pathways. The latter also identify host genetic risk factors for significant liver injury, which may help design prognostic risk scores. The diagnosis of ALD is relatively easy with a panel of well-evaluated tests and only rarely requires a liver biopsy. Treatment of ALD is difficult and grounded in abstinence as the pivotal therapeutic goal; once cirrhosis is established, treatment largely resembles that of other etiologies of advanced liver damage. Liver transplantation is a sound option for carefully selected patients with cirrhosis and alcoholic hepatitis because relapse rates are low and prognosis is comparable to other etiologies. Still, many countries are restrictive in allocating donor livers for ALD patients. Overall, few therapeutic options exist for severe ALD. However, there is good evidence of benefit for only corticosteroids in severe alcoholic hepatitis, while most other efforts are of limited efficacy. Considering the immense burden of ALD worldwide, efforts of medical professionals and industry partners to develop targeted therapies in ALF has been disappointingly low.

Authors: F. Stickel, C. Datz, J. Hampe, R. Bataller

Date Published: 15th Mar 2017

Publication Type: Not specified

Abstract

Not specified

Authors: P. Fisel, A. T. Nies, E. Schaeffeler, M. Schwab

Date Published: 1st Feb 2017

Publication Type: Not specified

Abstract (Expand)

The intricate (micro)vascular architecture of the liver has not yet been fully unravelled. Although current models are often idealized simplifications of the complex anatomical reality, correct morphological information is instrumental for scientific and clinical purposes. Previously, both vascular corrosion casting (VCC) and immunohistochemistry (IHC) have been separately used to study the hepatic vasculature. Nevertheless, these techniques still face a number of challenges such as dual casting in VCC and limited imaging depths for IHC. We have optimized both techniques and combined their complementary strengths to develop a framework for multilevel reconstruction of the hepatic circulation in the rat. The VCC and micro-CT scanning protocol was improved by enabling dual casting, optimizing the contrast agent concentration, and adjusting the viscosity of the resin (PU4ii). IHC was improved with an optimized clearing technique (CUBIC) that extended the imaging depth for confocal microscopy more than five-fold. Using in-house developed software (DeLiver), the vascular network - in both VCC and IHC datasets - was automatically segmented and/or morphologically analysed. Our methodological framework allows 3D reconstruction and quantification of the hepatic circulation, ranging from the major blood vessels down to the intertwined and interconnected sinusoids. We believe that the presented framework will have value beyond studies of the liver, and will facilitate a better understanding of various parenchymal organs in general, in physiological and pathological circumstances.

Authors: Geert Peeters, Charlotte Debbaut, Wim Laleman, Adrian Friebel, Diethard Monbaliu, Ingrid Vander Elst, Jan R Detrez, Tim Vandecasteele, Tim Johann, Thomas De Schryver, Luc Van Hoorebeke, Kasper Favere, Jonas Verbeke, Dirk Drasdo, Stefan Hoehme, Patrick Segers, Pieter Cornillie, Winnok H De Vos

Date Published: 28th Dec 2016

Publication Type: Not specified

Abstract (Expand)

Lipids are highly diverse metabolites of pronounced importance in health and disease. While metabolomics is a broad field under the omics umbrella that may also relate to lipids, lipidomics is an emerging field which specializes in the identification, quantification and functional interpretation of complex lipidomes. Today, it is possible to identify and distinguish lipids in a high-resolution, high-throughput manner and simultaneously with a lot of structural detail. However, doing so may produce thousands of mass spectra in a single experiment which has created a high demand for specialized computational support to analyze these spectral libraries. The computational biology and bioinformatics community has so far established methodology in genomics, transcriptomics and proteomics but there are many (combinatorial) challenges when it comes to structural diversity of lipids and their identification, quantification and interpretation. This review gives an overview and outlook on lipidomics research and illustrates ongoing computational and bioinformatics efforts. These efforts are important and necessary steps to advance the lipidomics field alongside analytic, biochemistry, biomedical and biology communities and to close the gap in available computational methodology between lipidomics and other omics sub-branches.

Authors: J. Pauling, E. Klipp

Date Published: 22nd Dec 2016

Publication Type: Not specified

Abstract (Expand)

Approximately 1.5 billion people worldwide are overweight or affected by obesity, and are at risk of developing type 2 diabetes, cardiovascular disease and related metabolic and inflammatory disturbances. Although the mechanisms linking adiposity to associated clinical conditions are poorly understood, recent studies suggest that adiposity may influence DNA methylation, a key regulator of gene expression and molecular phenotype. Here we use epigenome-wide association to show that body mass index (BMI; a key measure of adiposity) is associated with widespread changes in DNA methylation (187 genetic loci with P < 1 x 10(-7), range P = 9.2 x 10(-8) to 6.0 x 10(-46); n = 10,261 samples). Genetic association analyses demonstrate that the alterations in DNA methylation are predominantly the consequence of adiposity, rather than the cause. We find that methylation loci are enriched for functional genomic features in multiple tissues (P < 0.05), and show that sentinel methylation markers identify gene expression signatures at 38 loci (P < 9.0 x 10(-6), range P = 5.5 x 10(-6) to 6.1 x 10(-35), n = 1,785 samples). The methylation loci identify genes involved in lipid and lipoprotein metabolism, substrate transport and inflammatory pathways. Finally, we show that the disturbances in DNA methylation predict future development of type 2 diabetes (relative risk per 1 standard deviation increase in methylation risk score: 2.3 (2.07-2.56); P = 1.1 x 10(-54)). Our results provide new insights into the biologic pathways influenced by adiposity, and may enable development of new strategies for prediction and prevention of type 2 diabetes and other adverse clinical consequences of obesity.

Authors: S. Wahl, A. Drong, B. Lehne, M. Loh, W. R. Scott, S. Kunze, P. C. Tsai, J. S. Ried, W. Zhang, Y. Yang, S. Tan, G. Fiorito, L. Franke, S. Guarrera, S. Kasela, J. Kriebel, R. C. Richmond, M. Adamo, U. Afzal, M. Ala-Korpela, B. Albetti, O. Ammerpohl, J. F. Apperley, M. Beekman, P. A. Bertazzi, S. L. Black, C. Blancher, M. J. Bonder, M. Brosch, M. Carstensen-Kirberg, A. J. de Craen, S. de Lusignan, A. Dehghan, M. Elkalaawy, K. Fischer, O. H. Franco, T. R. Gaunt, J. Hampe, M. Hashemi, A. Isaacs, A. Jenkinson, S. Jha, N. Kato, V. Krogh, M. Laffan, C. Meisinger, T. Meitinger, Z. Y. Mok, V. Motta, H. K. Ng, Z. Nikolakopoulou, G. Nteliopoulos, S. Panico, N. Pervjakova, H. Prokisch, W. Rathmann, M. Roden, F. Rota, M. A. Rozario, J. K. Sandling, C. Schafmayer, K. Schramm, R. Siebert, P. E. Slagboom, P. Soininen, L. Stolk, K. Strauch, E. S. Tai, L. Tarantini, B. Thorand, E. F. Tigchelaar, R. Tumino, A. G. Uitterlinden, C. van Duijn, J. B. van Meurs, P. Vineis, A. R. Wickremasinghe, C. Wijmenga, T. P. Yang, W. Yuan, A. Zhernakova, R. L. Batterham, G. D. Smith, P. Deloukas, B. T. Heijmans, C. Herder, A. Hofman, C. M. Lindgren, L. Milani, P. van der Harst, A. Peters, T. Illig, C. L. Relton, M. Waldenberger, M. R. Jarvelin, V. Bollati, R. Soong, T. D. Spector, J. Scott, M. I. McCarthy, P. Elliott, J. T. Bell, G. Matullo, C. Gieger, J. S. Kooner, H. Grallert, J. C. Chambers

Date Published: 21st Dec 2016

Publication Type: Not specified

Abstract (Expand)

Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of triglycerides, cholesterol and toxic free fatty acids and is related to low vitamin D levels. In an analysis of specific gene sets we elucidate to what extent NAFLD associates to epigenetic and related transcriptional changes in gene networks regulating lipid, energy and vitamin D balance. Two gene clusters responsible for lipid homeostasis (74 genes) and vitamin D and energy balance (31 genes) were investigated with regard to average epigenetic shifts within the first 1500bp next to the transcriptional start site. Three cohorts from two published genome wide driven studies that used a microarray approach were investigated including altogether 103 NAFLD and 75 liver healthy subjects. In the first two steps associations between NAFLD abundance, strength of fibrosis and methylation were investigated in two cohorts by multiple linear regression analyses, correcting for important clinical and demographic parameters. Methylation associated strength of transcription in genes showing significant NAFLD related methylation changes were studied in a third step using a third cohort and applying Pearson's correlation and robust linear regression analyses. 41 genes in gene cluster 1 and 14 genes in cluster 2 were significantly differentially methylated in dependency of NAFLD and hepatic fibrosis. We detect new genes significantly changed in methylation, including APO family members (lipid transport), NPC1L1, STARD (cholesterol transport) and GRHL (energy homeostasis). Our results allow novel insights into the hepatic epigenetic regulation of genes important for lipid and vitamin D balance in NAFLD.

Authors: J. Mwinyi, A. E. Bostrom, C. Pisanu, S. K. Murphy, W. Erhart, C. Schafmayer, J. Hampe, C. Moylan, H. B. Schioth

Date Published: 18th Dec 2016

Publication Type: Not specified

Abstract (Expand)

The partial hepatectomy (PH) model is widely used to study liver regeneration. Currently, the extent of regeneration is analyzed by measuring the weight of the liver post-mortem or by magnetic resonance imaging. In this study we aimed to determine whether liver volume gain can be accurately measured using micro-computed tomography (microCT). Approximately 42% of the liver was removed by ligation in C57BL/6 N mice. Mice were divided into two study groups. In group 1 conventional characterization of liver hyperplasia was performed by weighing the liver post-mortem. In group 2, liver volume gain was determined by microCT volume estimation. MicroCT results showed equivalent regeneration rates compared with the conventional method without the need to mathematically determine initial liver weights before PH. This parameter is strongly influenced by the age, strain and sex of the mice. In addition non-invasive microCT determination of volume gain over multiple time-points using the same animal reduces the number of animals needing to be used (in line with the 3R principle of replacement, reduction and refinement).

Authors: O. M. Will, T. Damm, G. M. Campbell, W. von Schonfells, Y. Acil, M. Will, A. Chalaris-Rissmann, M. Ayna, C. Drucker, C. C. Gluer

Date Published: 8th Dec 2016

Publication Type: Not specified

Abstract (Expand)

Exploring the cell biology of hepatocytes in vitro could be a powerful strategy to dissect the molecular mechanisms underlying the structure and function of the liver in vivo. However, this approach relies on appropriate in vitro cell culture systems that can recapitulate the cell biological and metabolic features of the hepatocytes in the liver whilst being accessible to experimental manipulations. Here, we adapted protocols for high-resolution fluorescence microscopy and quantitative image analysis to compare two primary hepatocyte culture systems, monolayer and collagen sandwich, with respect to the distribution of two distinct populations of early endosomes (APPL1 and EEA1-positive), endocytic capacity, metabolic and signaling activities. In addition to the re-acquisition of hepatocellular polarity, primary hepatocytes grown in collagen sandwich but not in monolayer culture recapitulated the apico-basal distribution of EEA1 endosomes observed in liver tissue. We found that such distribution correlated with the organization of the actin cytoskeleton in vitro and, surprisingly, was dependent on the nutritional state in vivo. Hepatocytes in collagen sandwich also exhibited faster kinetics of low-density lipoprotein (LDL) and epidermal growth factor (EGF) internalization, showed improved insulin sensitivity and preserved their ability for glucose production, compared to hepatocytes in monolayer cultures. Although no in vitro culture system can reproduce the exquisite structural features of liver tissue, our data nevertheless highlight the ability of the collagen sandwich system to recapitulate key structural and functional properties of the hepatocytes in the liver and, therefore, support the usage of this system to study aspects of hepatocellular biology in vitro.

Authors: A. Zeigerer, A. Wuttke, G. Marsico, S. Seifert, Y. Kalaidzidis, M. Zerial

Date Published: 1st Dec 2016

Publication Type: Not specified

Abstract (Expand)

Small-molecule inhibitors of tyrosine kinases (TKIs) are the mainstay of treatment for many malignancies and represent novel treatment options for other diseases such as idiopathic pulmonary fibrosis. Twenty-five TKIs are currently FDA-approved and >130 are being evaluated in clinical trials. Increasing evidence suggests that drug exposure of TKIs may significantly contribute to drug resistance, independently from somatic variation of TKI target genes. Membrane transport proteins may limit the amount of TKI reaching the target cells. This review highlights current knowledge on the basic and clinical pharmacology of membrane transporters involved in TKI disposition and their contribution to drug efficacy and adverse drug effects. In addition to non-genetic and epigenetic factors, genetic variants, particularly rare ones, in transporter genes are promising novel factors to explain interindividual variability in the response to TKI therapy.

Authors: C. Neul, E. Schaeffeler, A. Sparreboom, S. Laufer, M. Schwab, A. T. Nies

Date Published: 25th Oct 2016

Publication Type: Not specified

Abstract (Expand)

Thiopurine-related hematotoxicity in pediatric acute lymphoblastic leukemia (ALL) and inflammatory bowel diseases has been linked to genetically defined variability in thiopurine S-methyltransferase (TPMT) activity. While gene testing of TPMT is being clinically implemented, it is unclear if additional genetic variation influences TPMT activity with consequences for thiopurine-related toxicity. To examine this possibility, we performed a genome-wide association study (GWAS) of red blood cell TPMT activity in 844 Estonian individuals and 245 pediatric ALL cases. Additionally, we correlated genome-wide genotypes to human hepatic TPMT activity in 123 samples. Only genetic variants mapping to chromosome 6, including the TPMT gene region, were significantly associated with TPMT activity (P < 5.0 x 10-8 ) in each of the three GWAS and a joint meta-analysis of 1,212 cases (top hit P = 1.2 x 10-72 ). This finding is consistent with TPMT genotype being the primary determinant of TPMT activity, reinforcing the rationale for genetic testing of TPMT alleles in routine clinical practice to individualize mercaptopurine dosage.

Authors: R. Tamm, R. Magi, R. Tremmel, S. Winter, E. Mihailov, A. Smid, A. Moricke, K. Klein, M. Schrappe, M. Stanulla, R. Houlston, R. Weinshilboum, I. Mlinaric Rascan, A. Metspalu, L. Milani, M. Schwab, E. Schaeffeler

Date Published: 23rd Oct 2016

Publication Type: Not specified

Abstract (Expand)

Lipid metabolism is essential for all major cell functions and has recently gained increasing attention in research and health studies. However, mathematical modeling by means of classical approaches such as stoichiometric networks and ordinary differential equation systems has not yet provided satisfactory insights, due to the complexity of lipid metabolism characterized by many different species with only slight differences and by promiscuous multifunctional enzymes. Here, we present an object-oriented stochastic model approach as a way to cope with the complex lipid metabolic network. While all lipid species are treated objects in the model, they can be modified by the respective converting reactions based on reaction rules, a hybrid method that integrates benefits of agent-based and classical stochastic simulation. This approach allows to follow the dynamics of all lipid species with different fatty acids, different degrees of saturation and different headgroups over time and to analyze the effect of parameter changes, potential mutations in the catalyzing enzymes or provision of different precursors. Applied to yeast metabolism during one cell cycle period, we could analyze the distribution of all lipids to the various membranes in time-dependent manner. The presented approach allows to efficiently treat the complexity of cellular lipid metabolism and to derive conclusions on the time- and location-dependent distributions of lipid species and their properties such as saturation. It is widely applicable, easily extendable and will provide further insights in healthy and diseased states of cell metabolism.

Authors: V. Schutzhold, J. Hahn, K. Tummler, E. Klipp

Date Published: 27th Sep 2016

Publication Type: Not specified

Abstract (Expand)

Lipid metabolism is essential for all major cell functions and has recently gained increasing attention in research and health studies. However, mathematical modeling by means of classical approaches such as stoichiometric networks and ordinary differential equation systems has not yet provided satisfactory insights, due to the complexity of lipid metabolism characterized by many different species with only slight differences and by promiscuous multifunctional enzymes. Here, we present an object-oriented stochastic model approach as a way to cope with the complex lipid metabolic network. While all lipid species are treated objects in the model, they can be modified by the respective converting reactions based on reaction rules, a hybrid method that integrates benefits of agent-based and classical stochastic simulation. This approach allows to follow the dynamics of all lipid species with different fatty acids, different degrees of saturation and different headgroups over time and to analyze the effect of parameter changes, potential mutations in the catalyzing enzymes or provision of different precursors. Applied to yeast metabolism during one cell cycle period, we could analyze the distribution of all lipids to the various membranes in time-dependent manner. The presented approach allows to efficiently treat the complexity of cellular lipid metabolism and to derive conclusions on the time- and location-dependent distributions of lipid species and their properties such as saturation. It is widely applicable, easily extendable and will provide further insights in healthy and diseased states of cell metabolism.

Authors: V. Schutzhold, J. Hahn, K. Tummler, E. Klipp

Date Published: 27th Sep 2016

Publication Type: Not specified

Abstract (Expand)

The susceptibility to developing alcohol dependence and significant alcohol-related liver injury is determined by a number of constitutional, environmental and genetic factors, although the nature and level of interplay between them remains unclear. The familiality and heritability of alcohol dependence is well-documented but, to date, no strong candidate genes conferring increased risk have emerged, although variants in alcohol dehydrogenase and acetaldehyde dehydrogenase have been shown to confer protection, predominantly in individuals of East Asian ancestry. Population contamination with confounders such as drug co-dependence and psychiatric and physical co-morbidity may explain the essentially negative genome-wide association studies in this disorder. The familiality and hereditability of alcohol-related cirrhosis is not as well-documented but three strong candidate genes PNPLA3, TM6SF2 and MBOAT7, have been identified. The mechanisms by which variants in these genes confer risk and the nature of the functional interplay between them remains to be determined but, when elucidated, will undoubtedly increase our understanding of the pathophysiology of this disease. The way in which this genetic information could potentially inform patient management has yet to be determined and tested.

Authors: F. Stickel, C. Moreno, J. Hampe, M. Y. Morgan

Date Published: 27th Aug 2016

Publication Type: Not specified

Abstract (Expand)

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder in industrialized countries. Mouse models of NAFLD have been used in studies of pathogenesis and treatment, and have certain features of the human disease. We performed a systematic transcriptome-wide analysis of liver tissues from patients at different stages of NAFLD progression (ranging from healthy obese individuals to those with steatosis), as well as rodent models of NAFLD, to identify those that most closely resemble human disease progression in terms of gene expression patterns. METHODS: We performed a systematic evaluation of genome-wide messenger RNA expression using liver tissues collected from mice fed a standard chow diet (controls) and 9 mouse models of NAFLD: mice on a high-fat diet (with or without fructose), mice on a Western-type diet, mice on a methionine- and choline-deficient diet, mice on a high-fat diet given streptozotocin, and mice with disruption of Pten in hepatocytes. We compared gene expression patterns with those of liver tissues from 25 patients with nonalcoholic steatohepatitis (NASH), 27 patients with NAFLD, 15 healthy obese individuals, and 39 healthy nonobese individuals (controls). Liver samples were obtained from patients undergoing liver biopsy for suspected NAFLD or NASH, or during liver or bariatric surgeries. Data sets were analyzed using the limma R-package. Overlap of functional profiles was analyzed by gene set enrichment analysis profiles. RESULTS: We found differences between human and mouse transcriptomes to be significantly larger than differences between disease stages or models. Of the 65 genes with significantly altered expression in patients with NASH and 177 genes with significantly altered expression in patients with NAFLD, compared with controls, only 1-18 of these genes also differed significantly in expression between mouse models of NAFLD and control mice. However, expression of genes that regulate pathways associated with the development of NAFLD were altered in some mouse models (such as pathways associated with lipid metabolism). On a pathway level, gene expression patterns in livers of mice on the high-fat diet were associated more closely with human fatty liver disease than other models. CONCLUSIONS: In comparing gene expression profiles between liver tissues from different mouse models of NAFLD and patients with different stages of NAFLD, we found very little overlap. Our data set is available for studies of pathways that contribute to the development of NASH and NAFLD and selection of the most applicable mouse models (http://www.nash-profiler.com).

Authors: A. Teufel, T. Itzel, W. Erhart, M. Brosch, X. Y. Wang, Y. O. Kim, W. von Schonfels, A. Herrmann, S. Bruckner, F. Stickel, J. F. Dufour, T. Chavakis, C. Hellerbrand, R. Spang, T. Maass, T. Becker, S. Schreiber, C. Schafmayer, D. Schuppan, J. Hampe

Date Published: 19th Jun 2016

Publication Type: Not specified

Abstract (Expand)

Lipidomics of human blood plasma is an emerging biomarker discovery approach that compares lipid profiles under pathological and physiologically normal conditions, but how a healthy lipidome varies within the population is poorly understood. By quantifying 281 molecular species from 27 major lipid classes in the plasma of 71 healthy young Caucasians whose 35 clinical blood test and anthropometric indices matched the medical norm, we provided a comprehensive, expandable and clinically relevant resource of reference molar concentrations of individual lipids. We established that gender is a major lipidomic factor, whose impact is strongly enhanced by hormonal contraceptives and mediated by sex hormone-binding globulin. In lipidomics epidemiological studies should avoid mixed-gender cohorts and females taking hormonal contraceptives should be considered as a separate sub-cohort. Within a gender-restricted cohort lipidomics revealed a compositional signature that indicates the predisposition towards an early development of metabolic syndrome in ca. 25% of healthy male individuals suggesting a healthy plasma lipidome as resource for early biomarker discovery.

Authors: S. Sales, J. Graessler, S. Ciucci, R. Al-Atrib, T. Vihervaara, K. Schuhmann, D. Kauhanen, M. Sysi-Aho, S. R. Bornstein, M. Bickle, C. V. Cannistraci, K. Ekroos, A. Shevchenko

Date Published: 14th Jun 2016

Publication Type: Not specified

Abstract (Expand)

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is associated with a high risk for liver cirrhosis and cancer. Recent studies demonstrate that NAFLD significantly impacts on the genome wide methylation and expression reporting top hit genes to be associated with e.g. diabetes mellitus. In a targeted analysis we specifically investigate to what extent NAFLD is associated with methylation and transcriptional changes in gene networks responsible for drug metabolism (DM) and bile acid (BA) homeostasis, which may trigger liver and system toxic events. METHODS: We performed a systematic analysis of 73 genes responsible for BA homeostasis and DM based on liver derived methylation and expression data from three cohort studies including 103 NAFLD and 75 non-NAFLD patients. Using multiple linear regression models, we detected methylation differences in proximity to the transcriptional start site of these genes in two NAFLD cohorts and correlated the methylation of significantly changed CpG sites to transcriptional expression in a third cohort using robust multiple linear regression approaches. RESULTS: We detected 64 genes involved in BA homeostasis and DM to be significantly differentially methylated. In 26 of these genes, methylation significantly correlated with RNA expression, detecting i.e. genes such as CYP27A1, OSTa, and SLC27A5 (BA homeostasis), and SLCO2B1, SLC47A1, and several UGT and CYP genes (DM) to be NAFLD dependently modulated. CONCLUSIONS: NAFLD is associated with significant shifts in the methylation of key genes responsible for BA and DM that are associated with transcriptional modulations. These findings have implications for BA composition, BA regulated metabolic pathways and for drug safety and efficacy.

Authors: H. B. Schioth, A. Bostrom, S. K. Murphy, W. Erhart, J. Hampe, C. Moylan, J. Mwinyi

Date Published: 14th Jun 2016

Publication Type: Not specified

Abstract (Expand)

The epigenetic regulation of expression of genes involved in the absorption, distribution, metabolism, and excretion (ADME) of drugs contributes to interindividual variability in drug response. Epigenetic mechanisms include DNA methylation, histone modifications, and miRNAs. This review systematically outlines the influence of DNA methylation on ADME gene expression and highlights the consequences for interindividual variability in drug response or drug-induced toxicity and the implications for personalized medicine.

Authors: P. Fisel, E. Schaeffeler, M. Schwab

Date Published: 12th Apr 2016

Publication Type: Not specified

Abstract (Expand)

Alcohol misuse is the leading cause of cirrhosis and the second most common indication for liver transplantation in the Western world. We performed a genome-wide association study for alcohol-related cirrhosis in individuals of European descent (712 cases and 1,426 controls) with subsequent validation in two independent European cohorts (1,148 cases and 922 controls). We identified variants in the MBOAT7 (P = 1.03 x 10(-9)) and TM6SF2 (P = 7.89 x 10(-10)) genes as new risk loci and confirmed rs738409 in PNPLA3 as an important risk locus for alcohol-related cirrhosis (P = 1.54 x 10(-48)) at a genome-wide level of significance. These three loci have a role in lipid processing, suggesting that lipid turnover is important in the pathogenesis of alcohol-related cirrhosis.

Authors: S. Buch, F. Stickel, E. Trepo, M. Way, A. Herrmann, H. D. Nischalke, M. Brosch, J. Rosendahl, T. Berg, M. Ridinger, M. Rietschel, A. McQuillin, J. Frank, F. Kiefer, S. Schreiber, W. Lieb, M. Soyka, N. Semmo, E. Aigner, C. Datz, R. Schmelz, S. Bruckner, S. Zeissig, A. M. Stephan, N. Wodarz, J. Deviere, N. Clumeck, C. Sarrazin, F. Lammert, T. Gustot, P. Deltenre, H. Volzke, M. M. Lerch, J. Mayerle, F. Eyer, C. Schafmayer, S. Cichon, M. M. Nothen, M. Nothnagel, D. Ellinghaus, K. Huse, A. Franke, S. Zopf, C. Hellerbrand, C. Moreno, D. Franchimont, M. Y. Morgan, J. Hampe

Date Published: 21st Oct 2015

Publication Type: Journal

Abstract (Expand)

Interactions between humans cause transmission of SARS-CoV-2. We demonstrate that heterogeneity in human-human interactions give rise to non-linear infection networks that gain complexity with time. Consequently, targeted vaccination strategies are challenged as such effects are not accurately captured by epidemiological models assuming homogeneous mixing. With vaccines being prepared for global deployment determining optimality for swiftly reaching population level immunity in heterogeneous local communities world-wide is critical. We introduce a model that predicts the effect of vaccination into an ongoing COVID-19 outbreak using precision simulation of human-human interaction and infection networks. We show that simulations incorporating non-linear network complexity and local heterogeneity can enable governance with performance-quantified vaccination strategies. Vaccinating highly interactive people diminishes the risk for an infection wave, while vaccinating the elderly reduces fatalities at low population level immunity. Interestingly, a combined strategy is not better due to non-linear effects. While risk groups should be vaccinated first to minimize fatalities, significant optimality branching is observed with increasing population level immunity. Importantly, we demonstrate that regardless of immunization strategy non-pharmaceutical interventions are required to prevent ICU overload and breakdown of healthcare systems. The approach, adaptable in real-time and applicable to other viruses, provides a highly valuable platform for the current and future pandemics.

Authors: Bjoern Goldenbogen, Stephan O. Adler, Oliver Bodeit, Judith AH Wodke, Ximena Escalera-Fanjul, Aviv Korman, Maria Krantz, Lasse Bonn, Rafael U Morán-Torres, Johanna E L Haffner, Maxim Karnetzki, Ivo Maintz, Lisa Mallis, Patrick S Segelitz, Martin Seeger, Rune Linding, Edda Klipp

Date Published: No date defined

Publication Type: Unpublished

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH