Publications

What is a Publication?
31 Publications matching the given criteria: (Clear all filters)
Published year: 202331

Abstract (Expand)

Abstract Type I interferons (IFNs) play a central role not only in innate immunity against viral infection, but also in the antitumour response, e.g. through a direct impact on cell proliferation.act on cell proliferation. Particularly for cancer arising in the context of chronic inflammation, constant exposure to IFNs may constitute a strong selective pressure during tumour evolution. Expansion of neoplastic subclones resistant to the antiproliferative effects of IFNs may contribute to immunoediting of tumours, leading to more aggressive disease. Experimental evidence for this development of IFN-insensitivity has been scarce and its molecular mechanism is unclear. In this study we demonstrate that six weeks exposure of cells to IFN-β in vitro reduces their sensitivity to its antiproliferative effects, and that this phenotype was stable for up to four weeks. Furthermore, we observed substantial differences in cellular sensitivity to growth inhibition by IFN-β in a panel of ten different liver cancer cell lines, most prominently in a pair of highly dedifferentiated cell lines, and least in cells from well-differentiated tumours. In both, long-term IFN selection and in dedifferentiated tumour cell lines, we found IFNAR2 expression to be substantially reduced, suggesting the receptor complex to be a sensitive target amenable to immunoediting. Beyond new insights into possible molecular processes in tumour evolution, these findings might prove valuable for the development of biomarkers allowing to stratify tumours for their sensitivity to IFN treatment in the context of patient tailored therapies.

Authors: Felix Hiebinger, Aiste Kudulyte, Huanting Chi, Sebastian Burbano De Lara, Doroteja Ilic, Barbara Helm, Hendrik Welsch, Viet Loan Dao Thi, Ursula Klingmüller, Marco Binder

Date Published: 1st Dec 2023

Publication Type: Journal

Abstract (Expand)

Abstract Gene regulation plays a critical role in the cellular processes that underlie human health and disease. The regulatory relationship between transcription factors (TFs), key regulators of genes), key regulators of gene expression, and their target genes, the so called TF regulons, can be coupled with computational algorithms to estimate the activity of TFs. However, to interpret these findings accurately, regulons of high reliability and coverage are needed. In this study, we present and evaluate a collection of regulons created using the CollecTRI meta-resource containing signed TF–gene interactions for 1186 TFs. In this context, we introduce a workflow to integrate information from multiple resources and assign the sign of regulation to TF–gene interactions that could be applied to other comprehensive knowledge bases. We find that the signed CollecTRI-derived regulons outperform other public collections of regulatory interactions in accurately inferring changes in TF activities in perturbation experiments. Furthermore, we showcase the value of the regulons by examining TF activity profiles in three different cancer types and exploring TF activities at the level of single-cells. Overall, the CollecTRI-derived TF regulons enable the accurate and comprehensive estimation of TF activities and thereby help to interpret transcriptomics data.

Authors: Sophia Müller-Dott, Eirini Tsirvouli, Miguel Vazquez, Ricardo O Ramirez Flores, Pau Badia-i-Mompel, Robin Fallegger, Dénes Türei, Astrid Lægreid, Julio Saez-Rodriguez

Date Published: 10th Nov 2023

Publication Type: Journal

Abstract (Expand)

MOTIVATION: Biological tissues are dynamic and highly organized. Multi-scale models are helpful tools to analyse and understand the processes determining tissue dynamics. These models usually depend on parameters that need to be inferred from experimental data to achieve a quantitative understanding, to predict the response to perturbations, and to evaluate competing hypotheses. However, even advanced inference approaches such as approximate Bayesian computation (ABC) are difficult to apply due to the computational complexity of the simulation of multi-scale models. Thus, there is a need for a scalable pipeline for modeling, simulating, and parameterizing multi-scale models of multi-cellular processes. RESULTS: Here, we present FitMultiCell, a computationally efficient and user-friendly open-source pipeline that can handle the full workflow of modeling, simulating, and parameterizing for multi-scale models of multi-cellular processes. The pipeline is modular and integrates the modeling and simulation tool Morpheus and the statistical inference tool pyABC. The easy integration of high-performance infrastructure allows to scale to computationally expensive problems. The introduction of a novel standard for the formulation of parameter inference problems for multi-scale models additionally ensures reproducibility and reusability. By applying the pipeline to multiple biological problems, we demonstrate its broad applicability, which will benefit in particular image-based systems biology. AVAILABILITY AND IMPLEMENTATION: FitMultiCell is available open-source at https://gitlab.com/fitmulticell/fit.

Authors: E. Alamoudi, Y. Schalte, R. Muller, J. Starruss, N. Bundgaard, F. Graw, L. Brusch, J. Hasenauer

Date Published: 1st Nov 2023

Publication Type: Journal

Abstract (Expand)

Type I interferons (IFNs) play a central role not only in innate immunity against viral infection, but also in the antitumour response. Apart from indirect immune-modulatory and anti-angiogenic effects, they have direct impact on cell proliferation. Particularly for cancer arising in the context of chronic inflammation, constant exposure to IFNs may constitute a strong selective pressure during tumour evolution. Expansion of neoplastic subclones or -populations that developed resistance to the antiproliferative effects of IFNs might constitute an important contribution to immunoediting of the cancer cells leading to more aggressive and metastasising disease. Experimental evidence for this development of IFN-insensitivity has been scarce and its molecular mechanism is unclear. In this study we demonstrate that prolonged (six weeks) exposure of cells to IFN-β in vitro reduces their sensitivity to its antiproliferative effects, and that this phenotype was stable for up to four weeks. Furthermore, we observed substantial differences in cellular sensitivity to growth inhibition by IFN-β in a panel of ten different liver cancer cell lines of varying malignity. IFN-resistance was most prominent in a pair of highly dedifferentiated cell lines, and least in cells from well-differentiated tumours, fostering the hypothesis of IFN-driven immunoediting in advanced cancers. In both settings, long-term IFN selection in vitro as well as in dedifferentiated tumour cell lines, we found IFNAR expression to be substantially reduced, suggesting the receptor complex, in particular IFNAR2, to be a sensitive target amenable to immunoediting. Beyond new insights into possible molecular processes in tumour evolution, these findings might prove valuable for the development of biomarkers allowing to stratify tumours for their sensitivity to IFN treatment in the context of patient tailored therapies.

Authors: Felix Hiebinger, Aiste Kudulyte, Huanting Chi, Sebastian Burbano De Lara, Barbara Helm, Hendrik Welsch, Viet Loan Dao Thi, Ursula Klingmüller, Marco Binder

Date Published: 24th Aug 2023

Publication Type: Journal

Abstract (Expand)

Abstract Background and Aims The presence of significant liver fibrosis associated with non‐alcoholic steatohepatitis (NASH) is regarded as the major prognostic factor in non‐alcoholic fatty liverhe major prognostic factor in non‐alcoholic fatty liver disease (NAFLD). Identification of patients at risk for NASH with significant fibrosis is therefore important. Although the established fibrosis score FIB‐4 is suitable to exclude advanced fibrosis, it does not allow the prediction of significant fibrosis in NAFLD patients. We therefore evaluated whether the hepatokine fibroblast growth factor 21 (FGF21), a regulator of glucose and lipid metabolism, might identify ‘at‐risk NASH’ in NAFLD. Methods FGF21 levels were assessed by enzyme‐linked immunosorbent assay in sera from an exploration ( n  = 137) and a validation ( n  = 88) cohort of biopsy‐proven NAFLD patients with different disease activity and fibrosis stages. In addition, we evaluated whether the use of FGF21 could improve risk stratification in NAFLD patients with low (<1.3) or intermediate (1.3–2.67) FIB‐4. Results FGF21 levels could significantly discriminate between NASH and non‐alcoholic fatty liver (NAFL) patients, even in the absence of diabetes. Moreover, patients with NASH and fibrosis ≥F2 showed significantly higher FGF21 levels compared to NAFLD patients without significant fibrosis. Significantly elevated FGF21 levels could even be detected in NAFLD patients with NASH and significant fibrosis despite low or intermediate FIB‐4. Conclusion Serological FGF21 detection might allow the identification of NAFLD patients at risk and improves patient stratification in combination with FIB‐4.

Authors: Martin Franck, Katharina John, Sherin Al Aoua, Monika Rau, Andreas Geier, Jörn M. Schattenberg, Heiner Wedemeyer, Klaus Schulze‐Osthoff, Heike Bantel

Date Published: 3rd Aug 2023

Publication Type: Journal

Abstract

Not specified

Authors: Dirk Drasdo, Jieling Zhao

Date Published: 1st Aug 2023

Publication Type: Journal

Abstract

Not specified

Authors: Astrid Ruiz-Margáin, Alessandra Pohlmann, Silke Lanzerath, Melanie Langheinrich, Alejandro Campos-Murguía, Berenice M. Román-Calleja, Robert Schierwagen, Sabine Klein, Frank Erhard Uschner, Maximilian Joseph Brol, Aldo Torre-Delgadillo, Nayelli C. Flores-García, Michael Praktiknjo, Ricardo U. Macías Rodríguez, Jonel Trebicka

Date Published: 1st Aug 2023

Publication Type: Journal

Abstract

Not specified

Authors: Frank Tacke, Tobias Puengel, Rohit Loomba, Scott L. Friedman

Date Published: 1st Aug 2023

Publication Type: Journal

Abstract

Not specified

Authors: Miquel Serra-Burriel, Adrià Juanola, Feliu Serra-Burriel, Maja Thiele, Isabel Graupera, Elisa Pose, Guillem Pera, Ivica Grgurevic, Llorenç Caballeria, Salvatore Piano, Laurens van Kleef, Mathias Reichert, Dominique Roulot, Juan M Pericàs, Jörn M Schattenberg, Emmanuel A Tsochatztis, Indra Neil Guha, Montserrat Garcia-Retortillo, Rosario Hernández, Jordi Hoyo, Matilde Fuentes, Carmen Expósito, Alba Martínez, Patricia Such, Anita Madir, Sönke Detlefsen, Marta Tonon, Andrea Martini, Ann T Ma, Judith Pich, Eva Bonfill, Marta Juan, Anna Soria, Marta Carol, Jordi Gratacós-Ginès, Rosa M Morillas, Pere Toran, J M Navarrete, Antoni Torrejón, Céline Fournier, Anne Llorca, Anita Arslanow, Harry J de Koning, Fernando Cucchietti, Michael Manns, Phillip N Newsome, Rubén Hernáez, Alina Allen, Paolo Angeli, Robert J de Knegt, Tom H Karlsen, Peter Galle, Vincent Wai-Sun Wong, Núria Fabrellas, Laurent Castera, Aleksander Krag, Frank Lammert, Patrick S Kamath, Pere Ginès, Marifé Alvarez, Peter Andersen, Paolo Angeli, Alba Ardèvol, Anita Arslanow, Luca Beggiato, Zahia Ben Abdesselam, Lucy Bennett, Bajiha Boutouria, Alessandra Brocca, M. Teresa Broquetas, Llorenç Caballeria, Valeria Calvino, Judith Camacho, Aura Capdevila, Marta Carol, Laurent Castera, Marta Cervera, Fernando Cucchietti, Anna de Fuentes, Rob de Knegt, Harry J de Koning, Sonke Detlefsen, Alba Diaz, José Diéguez Bande, Vanessa Esnault, Núria Fabrellas, Josep Lluis Falcó, Rosa Fernández, Céline Fournier, Matilde Fuentes, Peter Galle, Edgar García, Montserrat García-Retortillo, Esther Garrido, Pere Ginès, Rosa Gordillo Medina, Jordi Gratacós-Ginès, Isabel Graupera, Ivica Grgurevic, Indra Neil Guha, Eva Guix, Johanne Kragh Hansen, Rebecca Harris, Elena Hernández Boluda, Rosario Hernández-Ibañez, Jordi Hoyo, Arfan Ikram, Simone Incicco, Mads Israelsen, Marta Juan, Adrià Juanola, Ralf Kaiser, Patrick S Kamath, Tom H Karlsen, Maria Kjærgaard, Marko Korenjak, Aleksander Krag, Marcin Krawczyk, Philippe Laboulaye, Irina Lambert, Frank Lammert, Simon Langkjær Sørensen, Cristina Laserna-Jiménez, Sonia Lazaro Pi, Elsa Ledain, Vincent Levy, Katrine Prier Lindvig, Anne Llorca, Vanessa Londoño, Guirec Loyer, Ann T. Ma, Anita Madir, Michael Manns, Denise Marshall, M. Lluïsa Martí, Sara Martínez, Ricard Martínez Sala, Roser Masa-Font, Jane Møller Jensen, Rosa M Morillas, Laura Muñoz, Ruth Nadal, Laura Napoleone, JM Navarrete, Phillip N Newsome, Vibeke Nielsen, Martina Pérez, Juan Manuel Pericás-Pulido, Salvatore Piano, Judit Pich, Elisa Pose, Judit Presas Escobet, Matthias Reichert, Carlota Riba, Dominique Roulot, Ana Belén Rubio, Maria Sánchez-Morata, Jörn Schattenberg, Miquel Serra-Burriel, Feliu Serra-Burriel, Louise Skovborg Just, Milan Sonneveld, Anna Soria, Christiane Stern, Patricia Such, Maja Thiele, Marta Tonon, Pere Toran, Antoni Torrejón, Emmanuel A Tsochatzis, Laurens van Kleef, Paulien van Wijngaarden, Vanessa Velázquez, Ana Viu, Susanne Nicole Weber, Tracey Wildsmith

Date Published: 1st Aug 2023

Publication Type: Journal

Abstract (Expand)

Hepatocytes form bile canaliculi that dynamically respond to the signalling activity of bile acids and bile flow. Little is known about their responses to intraluminal pressure. During embryonic development, hepatocytes assemble apical bulkheads that increase the canalicular resistance to intraluminal pressure. Here, we investigate whether they also protect bile canaliculi against elevated pressure upon impaired bile flow in adult liver. Apical bulkheads accumulate upon bile flow obstruction in mouse models and patients with primary sclerosing cholangitis (PSC). Their loss under these conditions leads to abnormally dilated canaliculi, resembling liver cell rosettes described in other hepatic diseases. 3D reconstruction reveals that these structures are sections of cysts and tubes formed by hepatocytes. Mathematical modelling establishes that they positively correlate with canalicular pressure and occur in early PSC stages. Using primary hepatocytes and 3D organoids, we demonstrate that excessive canalicular pressure causes the loss of apical bulkheads and formation of rosettes. Our results suggest that apical bulkheads are a protective mechanism of hepatocytes against impaired bile flow, highlighting the role of canalicular pressure in liver diseases.

Authors: C. Mayer, S. Nehring, M. Kucken, U. Repnik, S. Seifert, A. Sljukic, J. Delpierre, H. Morales-Navarrete, S. Hinz, M. Brosch, B. Chung, T. Karlsen, M. Huch, Y. Kalaidzidis, L. Brusch, J. Hampe, C. Schafmayer, M. Zerial

Date Published: 31st Jul 2023

Publication Type: Journal

Abstract (Expand)

Variceal bleeding is a consequence of severe portal hypertension in patients with liver cirrhosis. Although the rate of bleeding has decreased over time, variceal bleeding in the presence of acute-on-chronic liver failure (ACLF) carries a high risk of treatment failure and short-term mortality. Treatment and/or removal of precipitating events (mainly bacterial infection and alcoholic hepatitis) and decrease of portal pressure may improve outcome of patients with acute decompensation or ACLF. Transjugular intrahepatic portosystemic shunts (TIPSs), especially in the preemptive situation, have been found to efficiently control bleeding, prevent rebleeding, and reduce short-term mortality. Therefore, TIPS placement should be considered as an option in the management of ACLF patients with variceal bleeding.

Authors: W. Gu, M. Kimmann, W. Laleman, M. Praktiknjo, J. Trebicka

Date Published: 17th Jul 2023

Publication Type: Journal

Abstract (Expand)

Endoscopy is and remains an indispensable tool in diagnosing and managing liver disease and its complications. Due to the progress in advanced endoscopy, endoscopy has become an alternative route for many surgical, percutaneous, and angiographic interventions, not only as a backup tool when conventional interventions fail but increasingly as a first-line choice. The term endo-hepatology refers to the integration of advanced endoscopy in the practice of hepatology. Endoscopy is key in the diagnosis and management of esophageal and gastric varices, portal hypertensive gastropathy, and gastric antral vascular ectasia. Endoscopic ultrasound (EUS) can be used for the evaluation of the liver parenchyma, liver lesions, and surrounding tissues and vessels, including targeted biopsy and complemented with new software functions. Moreover, EUS can guide portal pressure gradient measurement, and assess and help manage complications of portal hypertension. It is crucial that each present-day hepatologist is aware of the (rapidly increasing) full spectrum of diagnostic and therapeutic tools that exist within this field. In this comprehensive review, we would like to discuss the current endo-hepatology spectrum, as well as future directions for endoscopy in hepatology.

Authors: E. Vanderschueren, J. Trebicka, W. Laleman

Date Published: 17th Jul 2023

Publication Type: Journal

Abstract (Expand)

Chronic liver diseases are worldwide on the rise. Due to the rapidly increasing incidence, in particular in Western countries, Non-alcoholic fatty liver disease (NAFLD) is gaining importance as the disease can develop into hepatocellular carcinoma. Lipid accumulation in hepatocytes has been identified as the characteristic structural change in NAFLD development, but molecular mechanisms responsible for disease progression remained unresolved. Here, we uncover in primary hepatocytes from a preclinical model fed with a Western diet (WD) a strong downregulation of the PI3K-AKT pathway and an upregulation of the MAPK pathway. Dynamic pathway modeling of hepatocyte growth factor (HGF) signal transduction combined with global proteomics identifies that an elevated basal MET phosphorylation rate is the main driver of altered signaling leading to increased proliferation of WD-hepatocytes. Model-adaptation to patient-derived hepatocytes reveal patient-specific variability in basal MET phosphorylation, which correlates with patient outcome after liver surgery. Thus, dysregulated basal MET phosphorylation could be an indicator for the health status of the liver and thereby inform on the risk of a patient to suffer from liver failure after surgery.

Authors: Sebastian Burbano De Lara, Svenja Kemmer, Ina Biermayer, Svenja Feiler, Artyom Vlasov, Lorenza D'Alessandro, Barbara Helm, Yannik Dieter, Ahmed Ghallab, Jan Hengstler, Professor Dr. med. Katrin Hoffmann, Marcel Schilling, Jens Timmer, Ursula Klingmüller

Date Published: 4th Jul 2023

Publication Type: Journal

Abstract

Not specified

Authors: Mihael Vucur, Ahmed Ghallab, Anne T. Schneider, Arlind Adili, Mingbo Cheng, Mirco Castoldi, Michael T. Singer, Veronika Büttner, Leonie S. Keysberg, Lena Küsgens, Marlene Kohlhepp, Boris Görg, Suchira Gallage, Jose Efren Barragan Avila, Kristian Unger, Claus Kordes, Anne-Laure Leblond, Wiebke Albrecht, Sven H. Loosen, Carolin Lohr, Markus S. Jördens, Anne Babler, Sikander Hayat, David Schumacher, Maria T. Koenen, Olivier Govaere, Mark V. Boekschoten, Simone Jörs, Carlos Villacorta-Martin, Vincenzo Mazzaferro, Josep M. Llovet, Ralf Weiskirchen, Jakob N. Kather, Patrick Starlinger, Michael Trauner, Mark Luedde, Lara R. Heij, Ulf P. Neumann, Verena Keitel, Johannes G. Bode, Rebekka K. Schneider, Frank Tacke, Bodo Levkau, Twan Lammers, Georg Fluegen, Theodore Alexandrov, Amy L. Collins, Glyn Nelson, Fiona Oakley, Derek A. Mann, Christoph Roderburg, Thomas Longerich, Achim Weber, Augusto Villanueva, Andre L. Samson, James M. Murphy, Rafael Kramann, Fabian Geisler, Ivan G. Costa, Jan G. Hengstler, Mathias Heikenwalder, Tom Luedde

Date Published: 1st Jul 2023

Publication Type: Journal

Abstract (Expand)

The interplay between chromatin, transcription factors and genes generates complex regulatory circuits that can be represented as gene regulatory networks (GRNs). The study of GRNs is useful to understand how cellular identity is established, maintained and disrupted in disease. GRNs can be inferred from experimental data - historically, bulk omics data - and/or from the literature. The advent of single-cell multi-omics technologies has led to the development of novel computational methods that leverage genomic, transcriptomic and chromatin accessibility information to infer GRNs at an unprecedented resolution. Here, we review the key principles of inferring GRNs that encompass transcription factor-gene interactions from transcriptomics and chromatin accessibility data. We focus on the comparison and classification of methods that use single-cell multimodal data. We highlight challenges in GRN inference, in particular with respect to benchmarking, and potential further developments using additional data modalities.

Authors: P. Badia-I-Mompel, L. Wessels, S. Muller-Dott, R. Trimbour, R. O. Ramirez Flores, R. Argelaguet, J. Saez-Rodriguez

Date Published: 26th Jun 2023

Publication Type: Journal

Abstract (Expand)

Acute-on-chronic liver failure (ACLF) is a frequent complication in patients with liver cirrhosis that has high short-term mortality. It is characterized by acute decompensation (AD) of liver cirrhosis, intra- and extrahepatic organ failure, and severe systemic inflammation (SI). In the recent past, several studies have investigated the management of this group of patients. Identification and treatment of precipitants of decompensation and ACLF play an important role, and management of the respective intra- and extrahepatic organ failures is essential. However, no specific treatment for ACLF has been established to date, and the only curative treatment option currently available for these patients is liver transplantation (LT). It has been shown that ACLF patients are at severe risk of waitlist mortality, and post-LT survival rates are high, making ACLF patients suitable candidates for LT. However, only a limited number of patients are eligible for LT due to related contraindications such as uncontrolled infections. In this case, bridging strategies (e.g., extracorporeal organ support systems) are required. Further therapeutic approaches have recently been developed and evaluated. Thus, this review focuses on current management and potential future treatment options.

Authors: M. Kimmann, J. Trebicka

Date Published: 26th Jun 2023

Publication Type: Journal

Abstract

Not specified

Authors: Tobias Puengel, Frank Tacke

Date Published: 3rd Jun 2023

Publication Type: Journal

Abstract (Expand)

The biliary epithelial cells, also known as cholangiocytes, line the intra- and extrahepatic bile ducts, forming a barrier between intra- and extra-ductal environments. Cholangiocytes are mostly knowne mostly known to modulate bile composition and transportation. In hepatobiliary diseases, bile duct injury leads to drastic alterations in cholangiocyte phenotypes and their release of soluble mediators, which can vary depending on the original insult and cellular states (quiescence, senescence, or proliferation). The cholangiocyte-secreted cytokines (also termed cholangiokines) drive ductular cell proliferation, portal inflammation and fibrosis, and carcinogenesis. Hence, despite the previous consensus that cholangiocytes are bystanders in liver diseases, their diverse secretome plays critical roles in modulating the intrahepatic microenvironment. This review summarizes recent insights into the cholangiokines under both physiological and pathological conditions, especially as they occur during liver injury-regeneration, inflammation, fibrosis and malignant transformation processes.

Authors: Xiurong Cai, Frank Tacke, Adrien Guillot, Hanyang Liu

Date Published: 16th May 2023

Publication Type: Journal

Abstract (Expand)

BACKGROUND: Clinically significant portal hypertension (CSPH) drives cirrhosis-related complications (i.e. hepatic decompensation). Impaired nitric oxide (NO) bioavailability promotes sinusoidal vasoconstriction, which is the initial pathomechanism of CSPH development. Activation of soluble guanylyl cyclase (sGC), a key downstream effector of NO, facilitates sinusoidal vasodilation, which in turn may improve CSPH. Two phase II studies are being conducted to assess the efficacy of the NO-independent sGC activator BI 685,509 in patients with CSPH due to various cirrhosis aetiologies. METHODS: The 1366.0021 trial (NCT05161481) is a randomised, placebo-controlled, exploratory study that will assess BI 685,509 (moderate or high dose) for 24 weeks in patients with CSPH due to alcohol-related liver disease. The 1366.0029 trial (NCT05282121) is a randomised, open-label, parallel-group, exploratory study that will assess BI 685,509 (high dose) alone in patients with hepatitis B or C virus infection or non-alcoholic steatohepatitis (NASH) and in combination with 10 mg empagliflozin in patients with NASH and type 2 diabetes mellitus for 8 weeks. The 1366.0021 trial will enrol 105 patients, and the 1366.0029 trial will enrol 80 patients. In both studies, the primary endpoint is the change from baseline in hepatic venous pressure gradient (HVPG) until the end of treatment (24 or 8 weeks, respectively). Secondary endpoints include the proportion of patients with an HVPG reduction of > 10% from baseline, the development of decompensation events and the change from baseline in HVPG after 8 weeks in the 1366.0021 trial. In addition, the trials will assess changes in liver and spleen stiffness by transient elastography, changes in hepatic and renal function and the tolerability of BI 685,509. DISCUSSION: These trials will enable the assessment of the short-term (8 weeks) and longer-term (24 weeks) effects and safety of sGC activation by BI 685,509 on CSPH due to various cirrhosis aetiologies. The trials will use central readings of the diagnostic gold standard HVPG for the primary endpoint, as well as changes in established non-invasive biomarkers, such as liver and spleen stiffness. Ultimately, these trials will provide key information for developing future phase III trials. TRIAL REGISTRATION: 1366.0021: EudraCT no. 2021-001,285-38; ClinicalTrials.gov NCT05161481. Registered on 17 December 2021, https://www. CLINICALTRIALS: gov/ct2/show/NCT05161481 . 1366.0029: EudraCT no. 2021-005,171-40; ClinicalTrials.gov NCT05282121. Registered on 16 March 2022, https://www. CLINICALTRIALS: gov/ct2/show/NCT05282121 .

Authors: T. Reiberger, A. Berzigotti, J. Trebicka, J. Ertle, I. Gashaw, R. Swallow, A. Tomisser

Date Published: 24th Apr 2023

Publication Type: Journal

Abstract (Expand)

Hepatocytes grow their apical surfaces anisotropically to generate a 3D network of bile canaliculi (BC). BC elongation is ensured by apical bulkheads, membrane extensions that traverse the lumen and the lumen and connect juxtaposed hepatocytes. We hypothesize that apical bulkheads are mechanical elements that shape the BC lumen in liver development but also counteract elevated biliary pressure. Here, by resolving their structure using STED microscopy, we found that they are sealed by tight junction loops, connected by adherens junctions, and contain contractile actomyosin, characteristics of mechanical function. Apical bulkheads persist at high pressure upon microinjection of fluid into the BC lumen, and laser ablation demonstrated that they are under tension. A mechanical model based on ablation results revealed that apical bulkheads double the pressure BC can hold. Apical bulkhead frequency anticorrelates with BC connectivity during mouse liver development, consistent with predicted changes in biliary pressure. Our findings demonstrate that apical bulkheads are load-bearing mechanical elements that could protect the BC network against elevated pressure.

Authors: Maarten P. Bebelman, Matthew J. Bovyn, Carlotta M. Mayer, Julien Delpierre, Ronald Naumann, Nuno P. Martins, Alf Honigmann, Yannis Kalaidzidis, Pierre A. Haas, Marino Zerial

Date Published: 3rd Apr 2023

Publication Type: Journal

Abstract (Expand)

Chemokines or chemotactic cytokines play a pivotal role in the immune pathogenesis of liver cirrhosis and hepatocellular carcinoma (HCC). Nevertheless, comprehensive cytokine profiling data across different etiologies of liver diseases are lacking. Chemokines might serve as diagnostic and prognostic biomarkers. In our study, we analyzed serum concentrations of 12 inflammation-related chemokines in a cohort of patients (n = 222) with cirrhosis of different etiologies and/or HCC. We compared 97 patients with cirrhosis and treatment-naive HCC to the chemokine profile of 125 patients with cirrhosis but confirmed absence of HCC. Nine out of twelve chemokines were significantly elevated in sera of cirrhotic patients with HCC compared to HCC-free cirrhosis controls (CCL2, CCL11, CCL17, CCL20, CXCL1, CXCL5, CXCL9, CXCL10, CXCL11). Among those, CXCL5, CXCL9, CXCL10, and CXCL11 were significantly elevated in patients with early HCC according to the Barcelona Clinic Liver Cancer (BCLC) stages 0/A compared to cirrhotic controls without HCC. In patients with HCC, CXCL5 serum levels were associated with tumor progression, and levels of CCL20 and CXCL8 with macrovascular invasion. Importantly, our study identified CXCL5, CXCL9, and CXCL10 as universal HCC markers, independent from underlying etiology of cirrhosis. In conclusion, regardless of the underlying liver disease, patients with cirrhosis share an HCC-specific chemokine profile. CXCL5 may serve as a diagnostic biomarker in cirrhotic patients for early HCC detection as well as for tumor progression.

Authors: A. Laschtowitz, J. Lambrecht, T. Puengel, F. Tacke, R. Mohr

Date Published: 10th Mar 2023

Publication Type: Journal

Abstract (Expand)

Motivation Biological tissues are dynamic and highly organized. Multi-scale models are helpful tools to analyze and understand the processes determining tissue dynamics. These models usually depend on parameters that need to be inferred from experimental data to achieve a quantitative understanding, to predict the response to perturbations, and to evaluate competing hypotheses. However, even advanced inference approaches such as Approximate Bayesian Computation (ABC) are difficult to apply due to the computational complexity of the simulation of multi-scale models. Thus, there is a need for a scalable pipeline for modeling, simulating, and parameterizing multi-scale models of multi-cellular processes. Results Here, we present FitMultiCell, a computationally efficient and user-friendly open-source pipeline that can handle the full workflow of modeling, simulating, and parameterizing for multi-scale models of multi-cellular processes. The pipeline is modular and integrates the modeling and simulation tool Morpheus and the statistical inference tool pyABC. The easy integration of high-performance infrastructure allows to scale to computationally expensive problems. The introduction of a novel standard for the formulation of parameter inference problems for multi-scale models additionally ensures reproducibility and reusability. By applying the pipeline to multiple biological problems, we demonstrate its broad applicability, which will benefit in particular image-based systems biology. Availability FitMultiCell is available open-source at https://gitlab.com/fitmulticell/fit Supplementary data are available at https://doi.org/10.5281/zenodo.7646287

Authors: Emad Alamoudi, Yannik Schälte, Robert Müller, Jörn Starruß, Nils Bundgaard, Frederik Graw, Lutz Brusch, Jan Hasenauer

Date Published: 21st Feb 2023

Publication Type: Misc

Abstract (Expand)

Multi-target drugs (MTDs) are emerging alternatives to combination therapies. Since both histone deacetylases (HDACs) and cyclooxygenase-2 (COX-2) are known to be overexpressed in several cancer types, we herein report the design, synthesis, and biological evaluation of a library of dual HDAC-COX inhibitors. The designed compounds were synthesized via an efficient parallel synthesis approach using preloaded solid-phase resins. Biological in vitro assays demonstrated that several of the synthesized compounds possess pronounced inhibitory activities against HDAC and COX isoforms. The membrane permeability and inhibition of cellular HDAC activity of selected compounds were confirmed by whole-cell HDAC inhibition assays and immunoblot experiments. The most promising dual inhibitors, C3 and C4, evoked antiproliferative effects in the low micromolar concentration range and caused a significant increase in apoptotic cells. In contrast to previous reports, the simultaneous inhibition of HDAC and COX activity by dual HDAC-COX inhibitors or combination treatments with vorinostat and celecoxib did not result in additive or synergistic anticancer activities.

Authors: Luisa M. Bachmann, Maria Hanl, Felix Feller, Laura Sinatra, Andrea Schöler, Jens Pietzsch, Markus Laube, Finn K. Hansen

Date Published: 1st Feb 2023

Publication Type: Journal

Abstract (Expand)

Objective Hepatocellular carcinoma (HCC) often develops in patients with alcohol-related cirrhosis at an annual risk of up to 2.5%. Some host genetic risk factors have been identified but do not accounttors have been identified but do not account for the majority of the variance in occurrence. This study aimed to identify novel susceptibility loci for the development of HCC in people with alcohol related cirrhosis. Design Patients with alcohol-related cirrhosis and HCC (cases: n=1214) and controls without HCC (n=1866), recruited from Germany, Austria, Switzerland, Italy and the UK, were included in a two-stage genome-wide association study using a case–control design. A validation cohort of 1520 people misusing alcohol but with no evidence of liver disease was included to control for possible association effects with alcohol misuse. Genotyping was performed using the InfiniumGlobal Screening Array (V.24v2, Illumina) and the OmniExpress Array (V.24v1-0a, Illumina). Results Associations with variants rs738409 in PNPLA3 and rs58542926 in TM6SF2 previously associated with an increased risk of HCC in patients with alcohol-related cirrhosis were confirmed at genome-wide significance. A novel locus rs2242652(A) in TERT (telomerase reverse transcriptase) was also associated with a decreased risk of HCC, in the combined meta-analysis, at genome-wide significance (p=6.41×10 −9 , OR=0.61 (95% CI 0.52 to 0.70). This protective association remained significant after correction for sex, age, body mass index and type 2 diabetes (p=7.94×10 −5 , OR=0.63 (95% CI 0.50 to 0.79). Carriage of rs2242652(A) in TERT was associated with an increased leucocyte telomere length (p=2.12×10 −44 ). Conclusion This study identifies rs2242652 in TERT as a novel protective factor for HCC in patients with alcohol-related cirrhosis.

Authors: Stephan Buch, Hamish Innes, Philipp Ludwig Lutz, Hans Dieter Nischalke, Jens U Marquardt, Janett Fischer, Karl Heinz Weiss, Jonas Rosendahl, Astrid Marot, Marcin Krawczyk, Markus Casper, Frank Lammert, Florian Eyer, Arndt Vogel, Silke Marhenke, Johann von Felden, Rohini Sharma, Stephen Rahul Atkinson, Andrew McQuillin, Jacob Nattermann, Clemens Schafmayer, Andre Franke, Christian Strassburg, Marcella Rietschel, Heidi Altmann, Stefan Sulk, Veera Raghavan Thangapandi, Mario Brosch, Carolin Lackner, Rudolf E Stauber, Ali Canbay, Alexander Link, Thomas Reiberger, Mattias Mandorfer, Georg Semmler, Bernhard Scheiner, Christian Datz, Stefano Romeo, Stefano Ginanni Corradini, William Lucien Irving, Joanne R Morling, Indra Neil Guha, Eleanor Barnes, M Azim Ansari, Jocelyn Quistrebert, Luca Valenti, Sascha A Müller, Marsha Yvonne Morgan, Jean-François Dufour, Jonel Trebicka, Thomas Berg, Pierre Deltenre, Sebastian Mueller, Jochen Hampe, Felix Stickel

Date Published: 5th Jan 2023

Publication Type: Journal

Abstract (Expand)

Background: Macrophages play an important role in maintaining liver homeostasis and regeneration. However, it is not clear to what extent the different macrophage populations of the liver differ in terms of their activation state and which other liver cell populations may play a role in regulating the same. Methods: Reverse transcription PCR, flow cytometry, transcriptome, proteome, secretome, single cell analysis, and immunohistochemical methods were used to study changes in gene expression as well as the activation state of macrophages in vitro and in vivo under homeostatic conditions and after partial hepatectomy. Results: We show that F4/80+/CD11bhi/CD14hi macrophages of the liver are recruited in a C-C motif chemokine receptor (CCR2)–dependent manner and exhibit an activation state that differs substantially from that of the other liver macrophage populations, which can be distinguished on the basis of CD11b and CD14 expressions. Thereby, primary hepatocytes are capable of creating an environment in vitro that elicits the same specific activation state in bone marrow–derived macrophages as observed in F4/80+/CD11bhi/CD14hi liver macrophages in vivo. Subsequent analyses, including studies in mice with a myeloid cell–specific deletion of the TGF-β type II receptor, suggest that the availability of activated TGF-β and its downregulation by a hepatocyte-conditioned milieu are critical. Reduction of TGF-βRII-mediated signal transduction in myeloid cells leads to upregulation of IL-6, IL-10, and SIGLEC1 expression, a hallmark of the activation state of F4/80+/CD11bhi/CD14hi macrophages, and enhances liver regeneration. Conclusions: The availability of activated TGF-β determines the activation state of specific macrophage populations in the liver, and the observed rapid transient activation of TGF-β may represent an important regulatory mechanism in the early phase of liver regeneration in this context.

Authors: Stephanie D. Wolf, Christian Ehlting, Sophia Müller-Dott, Gereon Poschmann, Patrick Petzsch, Tobias Lautwein, Sai Wang, Barbara Helm, Marcel Schilling, Julio Saez-Rodriguez, Mihael Vucur, Kai Stühler, Karl Köhrer, Frank Tacke, Steven Dooley, Ursula Klingmüller, Tom Luedde, Johannes G. Bode

Date Published: 2023

Publication Type: Journal

Abstract (Expand)

Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a rare primary liver cancer which displays clinicopathologic features of both hepatocellular (HCC) and cholangiocellular carcinoma (CCA). Theoma (CCA). The similarity to HCC and CCA makes the diagnostic workup particularly challenging. Alpha-fetoprotein (AFP) and carbohydrate antigen 19-9 (CA 19-9) are blood tumour markers related with HCC and CCA, respectively. They can be used as diagnostic markers in cHCC-CCA as well, albeit with low sensitivity. The imaging features of cHCC-CCA overlap with those of HCC and CCA, dependent on the predominant histopathological component. Using the Liver Imaging and Reporting Data System (LI-RADS), as many as half of cHCC-CCAs may be falsely categorised as HCC. This is especially relevant since the diagnosis of HCC may be made without histopathological confirmation in certain cases. Thus, in instances of diagnostic uncertainty (e.g., simultaneous radiological HCC and CCA features, elevation of CA 19-9 and AFP, HCC imaging features and elevated CA 19-9, and vice versa) multiple image-guided core needle biopsies should be performed and analysed by an experienced pathologist. Recent advances in the molecular characterisation of cHCC-CCA, innovative diagnostic approaches (e.g., liquid biopsies) and methods to analyse multiple data points (e.g., clinical, radiological, laboratory, molecular, histopathological features) in an all-encompassing way (e.g., by using artificial intelligence) might help to address some of the existing diagnostic challenges.

Authors: Johannes Eschrich, Zuzanna Kobus, Dominik Geisel, Sebastian Halskov, Florian Roßner, Christoph Roderburg, Raphael Mohr, Frank Tacke

Date Published: 2023

Publication Type: Journal

Abstract

Not specified

Authors: Adrien Guillot, Marc Winkler, Milessa Silva Afonso, Abhishek Aggarwal, David Lopez, Hilmar Berger, Marlene S. Kohlhepp, Hanyang Liu, Burcin Özdirik, Johannes Eschrich, Jing Ma, Moritz Peiseler, Felix Heymann, Swetha Pendem, Sangeetha Mahadevan, Bin Gao, Lauri Diehl, Ruchi Gupta, Frank Tacke

Date Published: 2023

Publication Type: Journal

Abstract

Not specified

Authors: Felix Heymann, Jana C. Mossanen, Moritz Peiseler, Patricia M. Niemietz, Bruna Araujo David, Oliver Krenkel, Anke Liepelt, Matheus Batista Carneiro, Marlene S. Kohlhepp, Paul Kubes, Frank Tacke

Date Published: 2023

Publication Type: Journal

Abstract

Not specified

Authors: Savneet Kaur, Srivatsan Kidambi, Martí Ortega-Ribera, Le Thi Thanh Thuy, Natalia Nieto, Victoria C. Cogger, Wei-Fen Xie, Frank Tacke, Jordi Gracia-Sancho

Date Published: 2023

Publication Type: Journal

Abstract

Not specified

Authors: Herbert Tilg, Timon E. Adolph, Frank Tacke

Date Published: 2023

Publication Type: Journal

Abstract

Not specified

Authors: Joscha Vonderlin, Triantafyllos Chavakis, Michael Sieweke, Frank Tacke

Date Published: 2023

Publication Type: Journal

Powered by
(v.1.16.1)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH