

FOCUSED SCORES ENABLE RELIABLE DISCRIMINATION OF SMALL DIFFERENCES IN STEATOSIS

André Homeyer¹, Seddik Hammad^{2,3}, Lars Ole Schwen¹, Uta Dahmen⁴, Henning Höfener¹, Yan Gao², Steven Dooley², Andrea Schenk¹

¹ Fraunhofer MEVIS, Bremen ² Medical Faculty Mannheim, Heidelberg University ³ South Valley University, Qena ⁴ Jena University Hospital

INTRODUCTION

- Automated image analysis enables quantitative measurement of steatosis in histological images
- Standard scores cannot reliably discriminate small differences due to heterogeneity throughout tissue
- We developed novel, more reliable scores 'focused' on steatotic areas

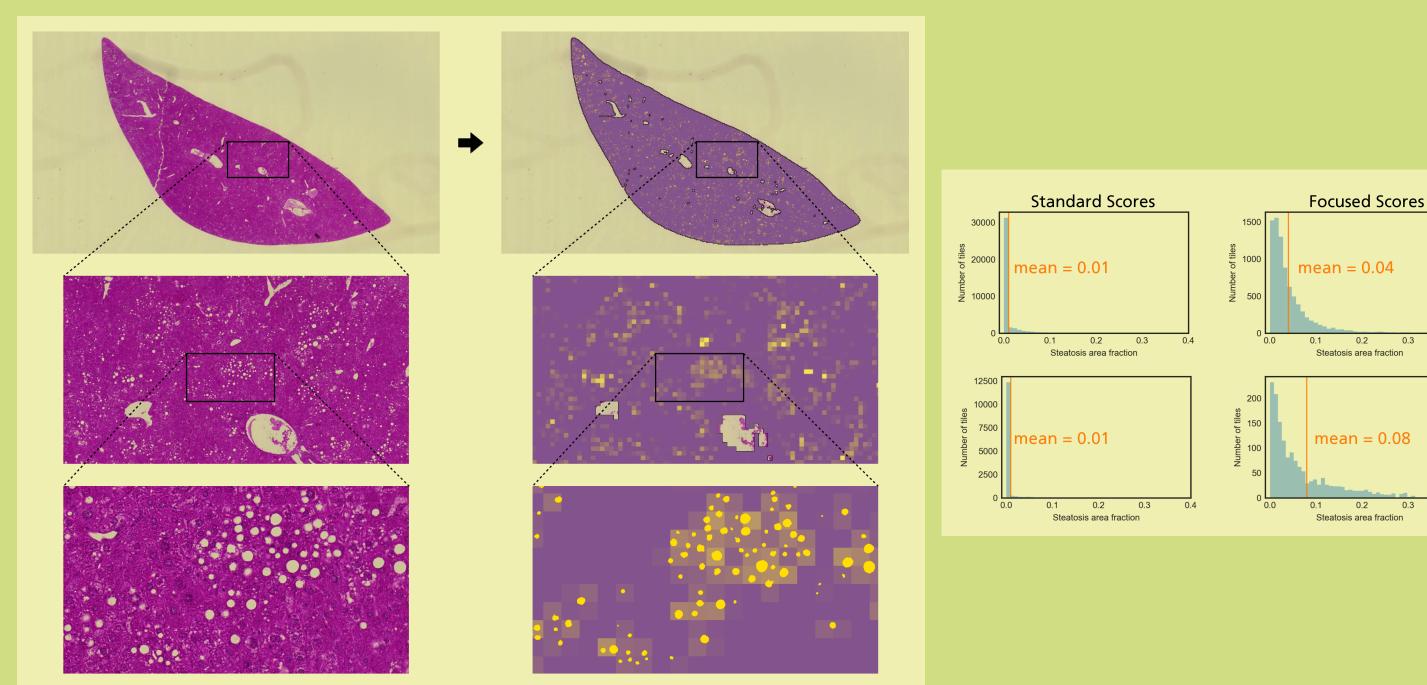


Figure 1. *Left:* Tile-based quantification of steatosis in whole-slide scans. *Right:* Distributions of tile-based steatosis area fractions; the corresponding mean values become discriminative only by focusing on steatotic regions.

MATERIAL AND METHODS

DATASETS

Whole-slide scans (227 nm/pixel) of H&E-stained slides of rodent liver tissue

- A: 4×6 rats fed different diets
- B: 5×6 mice, different periods of STAM treatment [1]
- C: 5×6 consecutive sections of one mouse liver, groups 300 µm apart [3]

FOCUSED SCORES

- Divide image in tiles of size $s \times s$, $s \in 8, ..., 128 \,\mu\text{m}$
- Compute steatosis area fraction (SAF) for each tile
- Compute descriptive statistics (mean, percentiles) over all tiles with nonzero steatosis (SAF \neq 0)

PERFORMANCE QUANTIFICATION

- Reliability via intraclass correlation coefficient (ICC; 0: poor, 1: perfect)
- Validity via Kendall's τ correlation coefficient (0: no, ±1: perfect monotonic correlation); assuming
 - Groups sorted by steatosis level (dataset A)
 - Increase over time (dataset B)
 - (Not applicable for dataset C)

RESULTS: TILE SIZE EVALUATION

Score	Tile size	Statistic/Dataset	ICC/A	ICC/B	ICC/C	τ/Α	
standard	n/a	mean	0.86	0.54	0.14	0.78	0.60
focused	8 µm	mean	0.84	0.76	0.72	0.79	0.73
focused	16 µm	mean	0.94	0.83	0.79	0.81	0.76
focused	32 µm	mean	0.92	0.86	0.83	0.81	0.82
focused	64 µm	mean	0.87	0.77	0.67	0.78	0.79
focused	128 µm	mean	0.86	0.62	0.28	0.77	0.70

- Dataset A already discriminated well by standard score
- Substantial improvement by focused mean for datasets B and C
- Tile size 32 μm generally performed best

RESULTS: PERCENTILE EVALUATION

Score	Tile size	Statistic/Dataset	ICC/A	ICC/B	ICC/C	<i>τ</i> /A	<u></u> τ/Β
focused	32 µm	mean	0.92	0.86	0.83	0.81	0.82
focused	32 µm	10th perc.	0.81	0.75	0.28	0.75	0.74
focused	32 µm	50th perc.	0.88	0.84	0.91	0.80	0.83
focused	32 µm	60th perc.	0.89	0.85	0.94	0.80	0.84
focused	32 µm	70th perc.	0.91	0.87	0.93	0.80	0.86
focused	32 µm	80th perc.	0.93	0.88	0.85	0.81	0.86
focused	32 µm	90th perc.	0.94	0.87	0.72	0.81	0.84

- 32 μm tile size fixed from above
- Focused high percentiles performed better than focused mean or lower percentiles
- 70th percentile generally performed best

RESULTS: RELIABLE DISCRIMINATION

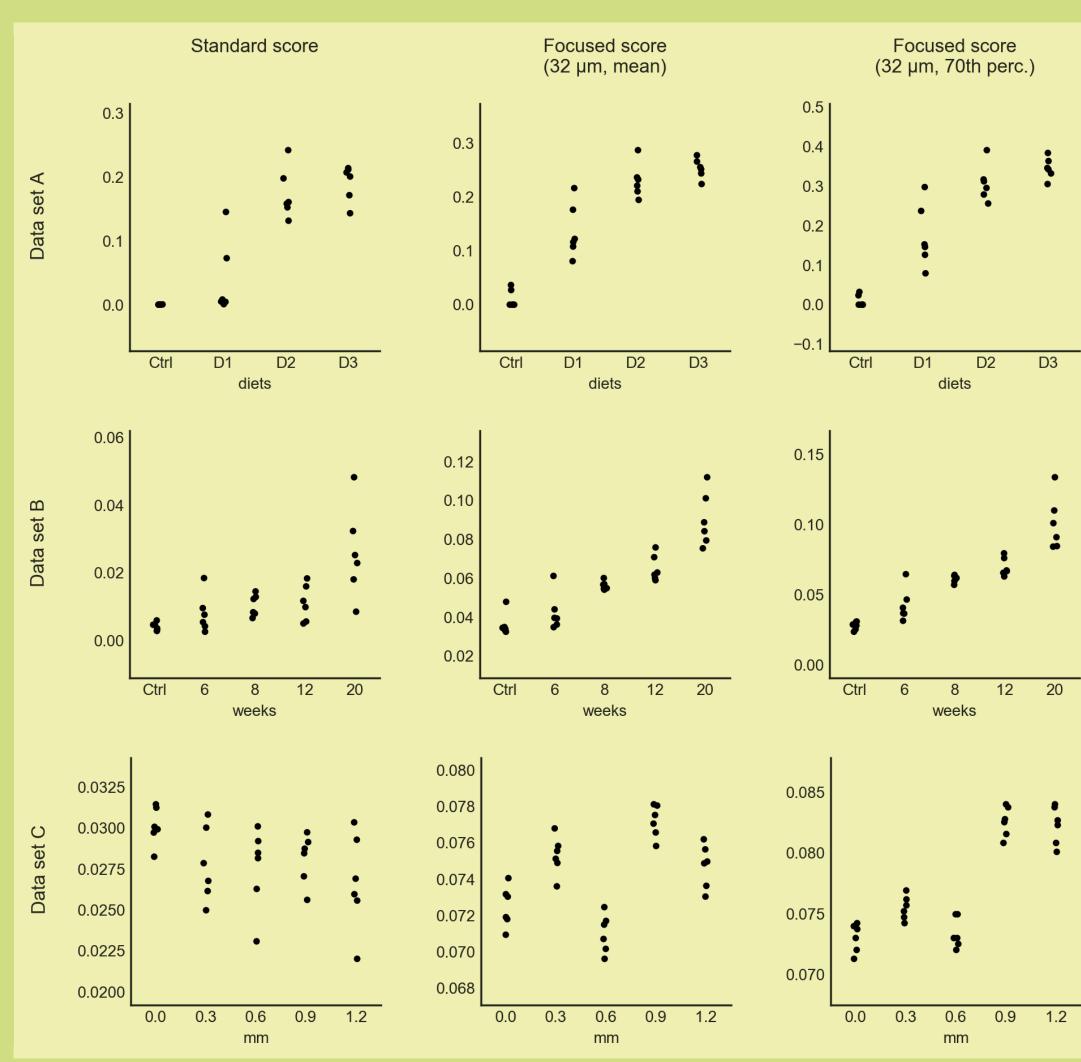


Figure 2. In the standard steatosis score (mean steatosis area fraction), different groups of specimens with small inter-group differences (*left column*) are hard to tell apart. In contrast, the focused mean (*middle*) and focused 70th percentile (*right column*) reliably discriminates between the different groups.

DISCUSSION & CONCLUSIONS

- Hotspot analysis focuses on regions with phenomenon of interest
- Tile size needs to match structures of interest and their heterogeneity
- High percentile enhances focus on phenomenon of interest and excludes inevitable artifacts

REFERENCES

- [1] M. Fujii et al., A murine model for non-alcoholic steatohepatitis showing evidence of association between diabetes and hepatocellular carcinoma, Medical Molecular Morphology **46** (2013), no. 3, 141–152. DOI 10.1007/s00795-013-0016-1
- [2] A. Homeyer, S. Hammad, L. O. Schwen, U. Dahmen, H. Höfener, Y. Gao, S. Dooley, and A. Schenk, Focused scores enable reliable discrimination of small differences in steatosis, Diagnostic Pathology 13 (2018), no. 76, 1–9. DOI 10.1186/s13000-018-0753-5
- [3] L. O. Schwen, A. Homeyer, M. Schwier, U. Dahmen, O. Dirsch, A. Schenk, L. Kuepfer, T. Preusser, and A. Schenk, *Zonated quantification of steatosis in an entire mouse liver*, Computers in Biology and Medicine **73** (2016), 108–118. DOI 10.1016/j.compbiomed.2016.04.004

CONTACT

André Homeyer (andre.homeyer@mevis.fraunhofer.de)
Ole Schwen (ole.schwen@mevis.fraunhofer.de)

