Publications

What is a Publication?
3 Publications matching the given criteria: (Clear all filters)
Author: Georg Damm3

Abstract (Expand)

The liver has the remarkable capacity to regenerate. In the clinic, this capacity can be induced by portal vein embolization (PVE), which redirects portal blood flow resulting in liver hypertrophy inpertrophy in locations with increased blood supply, and atrophy of embolized segments. Here we apply single-cell and single-nucleus transcriptomics on healthy, hypertrophied, and atrophied patient-derived liver samples to explore cell states in the liver during regeneration. We first establish an atlas of cell subtypes from the healthy human liver using fresh and frozen tissues, and then compare post-PVE samples with their reference counterparts. We find that PVE alters portal-central zonation of hepatocytes and endothelial cells. Embolization upregulates expression programs associated with development, cellular adhesion and inflammation across cell types. Analysis of interlineage crosstalk revealed key roles for immune cells in modulating regenerating tissue responses. Altogether, our data provides a rich resource for understanding homeostatic mechanisms arising during human liver regeneration and degeneration.

Authors: Agnieska Brazovskaja, Tomás Gomes, Christiane Körner, Zhisong He, Theresa Schaffer, Julian Connor Eckel, René Hänsel, Malgorzata Santel, Timm Denecke, Michael Dannemann, Mario Brosch, Jochen Hampe, Daniel Seehofer, Georg Damm, J. Gray Camp, Barbara Treutlein

Date Published: 3rd Jun 2021

Publication Type: Journal

Abstract (Expand)

The Hedgehog (Hh) and Wnt/β-Catenin (Wnt) cascades are morphogen pathways whose pronounced influence on adult liver metabolism has been identified in recent years. How both pathways communicate and control liver metabolic functions are largely unknown. Detecting core components of Wnt and Hh signaling and mathematical modeling showed that both pathways in healthy liver act largely complementary to each other in the pericentral (Wnt) and the periportal zone (Hh) and communicate mainly by mutual repression. The Wnt/Hh module inversely controls the spatiotemporal operation of various liver metabolic pathways, as revealed by transcriptome, proteome, and metabolome analyses. Shifting the balance to Wnt (activation) or Hh (inhibition) causes pericentralization and periportalization of liver functions, respectively. Thus, homeostasis of the Wnt/Hh module is essential for maintaining proper liver metabolism and to avoid the development of certain metabolic diseases. With caution due to minor species-specific differences, these conclusions may hold for human liver as well.

Authors: Erik Kolbe, Susanne Aleithe, Christiane Rennert, Luise Spormann, Fritzi Ott, David Meierhofer, Robert Gajowski, Claus Stöpel, Stefan Hoehme, Michael Kücken, Lutz Brusch, Michael Seifert, Witigo von Schoenfels, Clemens Schafmayer, Mario Brosch, Ute Hofmann, Georg Damm, Daniel Seehofer, Jochen Hampe, Rolf Gebhardt, Madlen Matz-Soja

Date Published: 1st Dec 2019

Publication Type: Not specified

Abstract (Expand)

A deeper epigenomic understanding of spatial organization of cells in human tissues is an important challenge. Here we report the first combined positional analysis of transcriptomes and methylomes across three micro-dissected zones (pericentral, intermediate and periportal) of human liver. We identify pronounced anti-correlated transcriptional and methylation gradients including a core of 271 genes controlling zonated metabolic and morphogen networks and observe a prominent porto-central gradient of DNA methylation at binding sites of 46 transcription factors. The gradient includes an epigenetic and transcriptional Wnt signature supporting the concept of a pericentral hepatocyte regeneration pathway under steady-state conditions. While donors with non-alcoholic fatty liver disease show consistent gene expression differences corresponding to the severity of the disease across all zones, the relative zonated gene expression and DNA methylation patterns remain unchanged. Overall our data provide a wealth of new positional insights into zonal networks controlled by epigenetic and transcriptional gradients in human liver.

Authors: Mario Brosch, Kathrin Kattler, Alexander Herrmann, Witigo von Schönfels, Karl Nordström, Daniel Seehofer, Georg Damm, Thomas Becker, Sebastian Zeissig, Sophie Nehring, Fabian Reichel, Vincent Moser, Raghavan Veera Thangapandi, Felix Stickel, Gustavo Baretton, Christoph Röcken, Michael Muders, Madlen Matz-Soja, Michael Krawczak, Gilles Gasparoni, Hella Hartmann, Andreas Dahl, Clemens Schafmayer, Jörn Walter, Jochen Hampe

Date Published: 1st Dec 2018

Publication Type: Not specified

Powered by
(v.1.16.1)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH