Publications

What is a Publication?
2 Publications matching the given criteria: (Clear all filters)
Author: Ute Hofmann2

Abstract (Expand)

The Hedgehog (Hh) and Wnt/β-Catenin (Wnt) cascades are morphogen pathways whose pronounced influence on adult liver metabolism has been identified in recent years. How both pathways communicate and control liver metabolic functions are largely unknown. Detecting core components of Wnt and Hh signaling and mathematical modeling showed that both pathways in healthy liver act largely complementary to each other in the pericentral (Wnt) and the periportal zone (Hh) and communicate mainly by mutual repression. The Wnt/Hh module inversely controls the spatiotemporal operation of various liver metabolic pathways, as revealed by transcriptome, proteome, and metabolome analyses. Shifting the balance to Wnt (activation) or Hh (inhibition) causes pericentralization and periportalization of liver functions, respectively. Thus, homeostasis of the Wnt/Hh module is essential for maintaining proper liver metabolism and to avoid the development of certain metabolic diseases. With caution due to minor species-specific differences, these conclusions may hold for human liver as well.

Authors: Erik Kolbe, Susanne Aleithe, Christiane Rennert, Luise Spormann, Fritzi Ott, David Meierhofer, Robert Gajowski, Claus Stöpel, Stefan Hoehme, Michael Kücken, Lutz Brusch, Michael Seifert, Witigo von Schoenfels, Clemens Schafmayer, Mario Brosch, Ute Hofmann, Georg Damm, Daniel Seehofer, Jochen Hampe, Rolf Gebhardt, Madlen Matz-Soja

Date Published: 1st Dec 2019

Publication Type: Not specified

Abstract (Expand)

Early indication of late-stage failure of novel candidate drugs could be facilitated by continuous integration, assessment, and transfer of knowledge acquired along pharmaceutical development programs. We here present a translational systems pharmacology workflow that combines drug cocktail probing in a specifically designed clinical study, physiologically based pharmacokinetic modeling, and Bayesian statistics to identify and transfer (patho-)physiological and drug-specific knowledge across distinct patient populations. Our work builds on two clinical investigations, one with 103 healthy volunteers and one with 79 diseased patients from which we systematically derived physiological information from pharmacokinetic data for a reference probe drug (midazolam) at the single-patient level. Taking into account the acquired knowledge describing (patho-)physiological alterations in the patient cohort allowed the successful prediction of the population pharmacokinetics of a second, candidate probe drug (torsemide) in the patient population. In addition, we identified significant relations of the acquired physiological processes to patient metadata from liver biopsies. The presented prototypical systems pharmacology approach is a proof of concept for model-based translation across different stages of pharmaceutical development programs. Applied consistently, it has the potential to systematically improve predictivity of pharmacokinetic simulations by incorporating the results of clinical trials and translating them to subsequent studies.

Authors: M. Krauss, U. Hofmann, C. Schafmayer, S. Igel, J. Schlender, C. Mueller, M. Brosch, W. von Schoenfels, W. Erhart, A. Schuppert, M. Block, E. Schaeffeler, G. Boehmer, L. Goerlitz, J. Hoecker, J. Lippert, R. Kerb, J. Hampe, L. Kuepfer, M. Schwab

Date Published: 27th Jun 2017

Publication Type: Not specified

Powered by
(v.1.16.1)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH