Publications

What is a Publication?
5 Publications visible to you, out of a total of 5

Abstract (Expand)

Background: Macrophages play an important role in maintaining liver homeostasis and regeneration. However, it is not clear to what extent the different macrophage populations of the liver differ in terms of their activation state and which other liver cell populations may play a role in regulating the same. Methods: Reverse transcription PCR, flow cytometry, transcriptome, proteome, secretome, single cell analysis, and immunohistochemical methods were used to study changes in gene expression as well as the activation state of macrophages in vitro and in vivo under homeostatic conditions and after partial hepatectomy. Results: We show that F4/80+/CD11bhi/CD14hi macrophages of the liver are recruited in a C-C motif chemokine receptor (CCR2)–dependent manner and exhibit an activation state that differs substantially from that of the other liver macrophage populations, which can be distinguished on the basis of CD11b and CD14 expressions. Thereby, primary hepatocytes are capable of creating an environment in vitro that elicits the same specific activation state in bone marrow–derived macrophages as observed in F4/80+/CD11bhi/CD14hi liver macrophages in vivo. Subsequent analyses, including studies in mice with a myeloid cell–specific deletion of the TGF-β type II receptor, suggest that the availability of activated TGF-β and its downregulation by a hepatocyte-conditioned milieu are critical. Reduction of TGF-βRII-mediated signal transduction in myeloid cells leads to upregulation of IL-6, IL-10, and SIGLEC1 expression, a hallmark of the activation state of F4/80+/CD11bhi/CD14hi macrophages, and enhances liver regeneration. Conclusions: The availability of activated TGF-β determines the activation state of specific macrophage populations in the liver, and the observed rapid transient activation of TGF-β may represent an important regulatory mechanism in the early phase of liver regeneration in this context.

Authors: Stephanie D. Wolf, Christian Ehlting, Sophia Müller-Dott, Gereon Poschmann, Patrick Petzsch, Tobias Lautwein, Sai Wang, Barbara Helm, Marcel Schilling, Julio Saez-Rodriguez, Mihael Vucur, Kai Stühler, Karl Köhrer, Frank Tacke, Steven Dooley, Ursula Klingmüller, Tom Luedde, Johannes G. Bode

Date Published: 2023

Publication Type: Journal

Abstract (Expand)

The p38(MAPK) downstream targets MAPKAP kinases (MK) 2 and 3 are critical for the regulation of the macrophage response to LPS. The extents to which these two kinases act cooperatively and distinctly in regulating LPS-induced inflammatory cytokine expression are still unclear. To address this uncertainty, whole transcriptome analyses were performed using bone marrow-derived macrophages (BMDM) generated from MK2(-/-) or MK2/3(-/-) animals and their wild-type littermates. The results suggest that in BMDM, MK2 and MK3 not only cooperatively regulate the transcript expression of signaling intermediates, including IL-10, IL-19, CXCL2 and the IL-4 receptor (IL-4R)alpha subunit, they also exert distinct regulatory effects on the expression of specific transcripts. Based on the differential regulation of gene expression by MK2 and MK3, at least six regulatory patterns were identified. Importantly, we confirmed our previous finding, which showed that in the absence of MK2, MK3 negatively regulates IFN-beta. Moreover, this genome-wide analysis identified the regulation of Cr1A, NOD1 and Serpina3f as similar to that of IFN-beta. In the absence of MK2, MK3 also delayed the nuclear translocation of NFkappaB by delaying the ubiquitination and subsequent degradation of IkappaBbeta, reflecting the substantial plasticity of the response of BMDM to LPS.

Authors: C. Ehlting, J. Rex, U. Albrecht, R. Deenen, C. Tiedje, K. Kohrer, O. Sawodny, M. Gaestel, D. Haussinger, J. G. Bode

Date Published: 30th Jul 2019

Publication Type: Not specified

Abstract (Expand)

IL-6 is a central mediator of the immediate induction of hepatic acute phase proteins (APP) in the liver during infection and after injury, but increased IL-6 activity has been associated with multiple pathological conditions. In hepatocytes, IL-6 activates JAK1-STAT3 signaling that induces the negative feedback regulator SOCS3 and expression of APPs. While different inhibitors of IL-6-induced JAK1-STAT3-signaling have been developed, understanding their precise impact on signaling dynamics requires a systems biology approach. Here we present a mathematical model of IL-6-induced JAK1-STAT3 signaling that quantitatively links physiological IL-6 concentrations to the dynamics of IL-6-induced signal transduction and expression of target genes in hepatocytes. The mathematical model consists of coupled ordinary differential equations (ODE) and the model parameters were estimated by a maximum likelihood approach, whereas identifiability of the dynamic model parameters was ensured by the Profile Likelihood. Using model simulations coupled with experimental validation we could optimize the long-term impact of the JAK-inhibitor Ruxolitinib, a therapeutic compound that is quickly metabolized. Model-predicted doses and timing of treatments helps to improve the reduction of inflammatory APP gene expression in primary mouse hepatocytes close to levels observed during regenerative conditions. The concept of improved efficacy of the inhibitor through multiple treatments at optimized time intervals was confirmed in primary human hepatocytes. Thus, combining quantitative data generation with mathematical modeling suggests that repetitive treatment with Ruxolitinib is required to effectively target excessive inflammatory responses without exceeding doses recommended by the clinical guidelines.

Authors: S. Sobotta, A. Raue, X. Huang, J. Vanlier, A. Junger, S. Bohl, U. Albrecht, M. J. Hahnel, S. Wolf, N. S. Mueller, L. A. D'Alessandro, S. Mueller-Bohl, M. E. Boehm, P. Lucarelli, S. Bonefas, G. Damm, D. Seehofer, W. D. Lehmann, S. Rose-John, F. van der Hoeven, N. Gretz, F. J. Theis, C. Ehlting, J. G. Bode, J. Timmer, M. Schilling, U. Klingmuller

Date Published: 9th Oct 2017

Publication Type: Not specified

Abstract (Expand)

OBJECTIVE: Bone morphogenetic protein (BMP)-9, a member of the transforming growth factor-beta family of cytokines, is constitutively produced in the liver. Systemic levels act on many organs and tissues including bone and endothelium, but little is known about its hepatic functions in health and disease. DESIGN: Levels of BMP-9 and its receptors were analysed in primary liver cells. Direct effects of BMP-9 on hepatic stellate cells (HSCs) and hepatocytes were studied in vitro, and the role of BMP-9 was examined in acute and chronic liver injury models in mice. RESULTS: Quiescent and activated HSCs were identified as major BMP-9 producing liver cell type. BMP-9 stimulation of cultured hepatocytes inhibited proliferation, epithelial to mesenchymal transition and preserved expression of important metabolic enzymes such as cytochrome P450. Acute liver injury caused by partial hepatectomy or single injections of carbon tetrachloride (CCl4) or lipopolysaccharide (LPS) into mice resulted in transient downregulation of hepatic BMP-9 mRNA expression. Correspondingly, LPS stimulation led to downregulation of BMP-9 expression in cultured HSCs. Application of BMP-9 after partial hepatectomy significantly enhanced liver damage and disturbed the proliferative response. Chronic liver damage in BMP-9-deficient mice or in mice adenovirally overexpressing the selective BMP-9 antagonist activin-like kinase 1-Fc resulted in reduced deposition of collagen and subsequent fibrosis. CONCLUSIONS: Constitutive expression of low levels of BMP-9 stabilises hepatocyte function in the healthy liver. Upon HSC activation, endogenous BMP-9 levels increase in vitro and in vivo and high levels of BMP-9 cause enhanced damage upon acute or chronic injury.

Authors: K. Breitkopf-Heinlein, C. Meyer, C. Konig, H. Gaitantzi, A. Addante, M. Thomas, E. Wiercinska, C. Cai, Q. Li, F. Wan, C. Hellerbrand, N. A. Valous, M. Hahnel, C. Ehlting, J. G. Bode, S. Muller-Bohl, U. Klingmuller, J. Altenoder, I. Ilkavets, M. J. Goumans, L. J. Hawinkels, S. J. Lee, M. Wieland, C. Mogler, M. P. Ebert, B. Herrera, H. Augustin, A. Sanchez, S. Dooley, P. Ten Dijke

Date Published: 25th Mar 2017

Publication Type: Not specified

Abstract (Expand)

OBJECTIVE: Bone morphogenetic protein (BMP)-9, a member of the transforming growth factor-beta family of cytokines, is constitutively produced in the liver. Systemic levels act on many organs and tissues including bone and endothelium, but little is known about its hepatic functions in health and disease. DESIGN: Levels of BMP-9 and its receptors were analysed in primary liver cells. Direct effects of BMP-9 on hepatic stellate cells (HSCs) and hepatocytes were studied in vitro, and the role of BMP-9 was examined in acute and chronic liver injury models in mice. RESULTS: Quiescent and activated HSCs were identified as major BMP-9 producing liver cell type. BMP-9 stimulation of cultured hepatocytes inhibited proliferation, epithelial to mesenchymal transition and preserved expression of important metabolic enzymes such as cytochrome P450. Acute liver injury caused by partial hepatectomy or single injections of carbon tetrachloride (CCl4) or lipopolysaccharide (LPS) into mice resulted in transient downregulation of hepatic BMP-9 mRNA expression. Correspondingly, LPS stimulation led to downregulation of BMP-9 expression in cultured HSCs. Application of BMP-9 after partial hepatectomy significantly enhanced liver damage and disturbed the proliferative response. Chronic liver damage in BMP-9-deficient mice or in mice adenovirally overexpressing the selective BMP-9 antagonist activin-like kinase 1-Fc resulted in reduced deposition of collagen and subsequent fibrosis. CONCLUSIONS: Constitutive expression of low levels of BMP-9 stabilises hepatocyte function in the healthy liver. Upon HSC activation, endogenous BMP-9 levels increase in vitro and in vivo and high levels of BMP-9 cause enhanced damage upon acute or chronic injury.

Authors: K. Breitkopf-Heinlein, C. Meyer, C. Konig, H. Gaitantzi, A. Addante, M. Thomas, E. Wiercinska, C. Cai, Q. Li, F. Wan, C. Hellerbrand, N. A. Valous, M. Hahnel, C. Ehlting, J. G. Bode, S. Muller-Bohl, U. Klingmuller, J. Altenoder, I. Ilkavets, M. J. Goumans, L. J. Hawinkels, S. J. Lee, M. Wieland, C. Mogler, M. P. Ebert, B. Herrera, H. Augustin, A. Sanchez, S. Dooley, P. Ten Dijke

Date Published: 23rd Mar 2017

Publication Type: Not specified

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH