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Chronic Liver Disease Progression - The Modeller’s Perspective
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Same model structure but different behaviors

Primary hepatocytes Hepa 1-6

Chronic Liver Disease Progression - The Modeller’s Perspective
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Dynamics:
~̇x = ~f(~x,~p,~u), ~x(t0) = ~x0 ~x ∈ Rn

+

Observations:

~y(ti) = ~g(~x(ti),~p) + ~ε(ti), ~ε(ti) ∼ N(0,Σi), ~y ∈ Rm
+

Negative log-likelihood:

χ2(~p,~x0) =
N∑

i=1

M∑
j=1

(
(yD

j (ti)− gj(~x(ti;~p,~x0)

σi j

)2

Parameters fitted on logarithmic scale

Parameter Estimation in Nonlinear, Partially Observed,
Noisy, Non-autonomous, Stiff, Sparse Dynamical Systems
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Hypothesis:
Disease progression = Alterations in cellular information processing

Hierarchy of possibilities to reflect this in the models
I Changes in initial values ~x0: Different expression levels of involved proteins
I Changes in kinetic parameters ~p: Different expression levels of enzymes,

scaffolds or transporters
I Changes in topological structure of pathway f(.): Other proteins involved

All alterations in the model can be related to biology

Chronic Liver Disease Progression - The Modeller’s Perspective
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I Fit models for different stages of disease progression
I Look for differences in initial values, parameters, model structure
I Challenge: Experimental data =⇒ there will always be differences
I Required: A systematic procedure to detect ”real” differences
I Since differences are related to biology:

Model-based functional genomics/proteomics

Strategy
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I Performing a plethora of t-tests is not an option
I Idea:

For parameter pj
i at disease stage j write parameter pj′

i at disease stage j′ as

pj′
i = r̃i pj

i

On log-scale:

ri = log r̃i, ri = 0 means no difference for parameter pi between stages j and j′

I Challenge: How to find the real differences

Finding the Differences
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Extend the log-likelihood
χ2

k, λ = χ2 + λ
∑

i
|ri|k

Goal:
I The statistically minimum number of necessary differences, a sparse solution
I numerically efficient

How to choose k and λ ?

Regularisation



χ2
k, λ = χ2 + λ

∑
i
|ri|k

I k = 0: gives sparsity, but NP-hard
I k = 2: efficient, but not sparse
I k = 1: also sparse, but treatable

A lot of numerical details ...
I Non-differentiable objective function at ri = 0: sub-gradients
I Constrained optimisation: Karush-Kuhn-Tucker criterion
I Uniqueness of reduction: profile likelihood

Choosing k



χ2
1, λ = χ2 + λ

∑
i
|ri|1

I Estimate parameters individually for all disease stages from χ2
1, 0

I Scan λ from 0 to higher values
I Estimate parameters based on regularised χ2

1, λ
I Will lead to increasing number of ri = 0
I Apply likelihood ratio test between χ2

1, 0 and χ2
1, λ

I If not significant ri = 0 is justified, otherwise: stop
I Use profile likelihood to find out whether reduction is unique

Merkle et al. 2016, PLoS Comput Biol 12(8): e1005049.
Steiert et al. 2016, Bioinformatics 32, 2016, i718-i726

Choosing λ



I There is still need to develop new modeling techniques in systems medicine
I Since differences in parameters at different disease stages reflect biology

I understand mechanisms
I identify biomarkers
I identify intervention points

I Systems are non-linear: points of maximal differences are not necessarily
points of most effective interactions

I It needs the model

Summary
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Regularization: example
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Regularization: step size
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Karush–Kuhn–Tucker convergence criterion{
∇iχ

2(p̂i) + λ sign(p̂i) = 0, |p̂i| > 0
|∇iχ

2(p̂i)| ≤ λ, p̂i = 0

Regularization: convergence


